

Software Requirements
Specification

for

Gaia-X Federation Services

Trust Services API
IDM.TSA

Software Requirements Specification for IDM.TSA Page ii

© 2021. This work is licensed under a CC BY 4.0 license.

Published by

eco – Association of the Internet Industry (eco – Verband der Internetwirtschaft e.V.)
Lichtstrasse 43h
50825 Cologne, Germany

Copyright

© 2021 GAIA-X European Association for Data and Cloud AISBL

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page iii

© 2021. This work is licensed under a CC BY 4.0 license.

Table of Contents

List of Figures vi

List of Tables vi

1. Introduction 1

1.1. Document Purpose 1

1.2. Product Scope 1

1.3. Definitions, Acronyms and Abbreviations 1

1.4. References 1

1.5. Document Overview 4

2. Product Overview 4

2.1. Product Perspective 4

2.2. Product Functions 5

2.3. Product Constraints 6

2.4. User Classes and Characteristics 7

2.5. Operating Environment 8

2.6. User Documentation 8

2.7. Assumptions and Dependencies 9

2.8. Apportioning of Requirements 9

3. Requirements 9

3.1. External Interfaces 10

3.1.1. User Interfaces 10

3.1.2. Hardware Interfaces 10

3.1.3. Software Interfaces 10

3.1.4. Communications Interfaces 10

3.2. Functional 11

3.2.1. Git Ops 11

3.2.2. Policy Management Module 11

3.2.3. Universal DID Resolver 15

3.2.4. Policy Decision Engine 16

3.2.5. Policy Evaluator 17

3.2.6. Task Controller 18

3.2.7. Secret Store 21

3.2.8. JSON-LD signatures and validations 21

3.2.9. Information Hub 23

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page iv

© 2021. This work is licensed under a CC BY 4.0 license.

3.2.10. Distributable Cache 25

3.2.11. eIDAS 29

3.3. Other Nonfunctional Requirements 29

3.3.1. HTTP Requirements 29

3.3.2. Configuration 29

3.3.3. Logging Requirements 29

3.3.4. Monitoring Requirements 30

3.3.5. Performance Requirements 30

3.3.6. Safety Requirements 31

3.3.7. Security Requirements 31

3.3.7.1. General Security Requirements 31

3.3.7.2. Service Specific Security Requirements 31

3.3.8. Software Quality Attributes 34

3.4. Compliance 34

3.5. Design and Implementation 35

3.5.1. Distribution 35

3.5.2. Maintainability 35

3.5.3. Operability 35

3.5.4. Interoperability 35

4. System Features 36

4.1. Policy Evaluation 36

4.1.1. Description 36

4.1.2. Stimulus/Response Sequences 36

4.1.3. Functional Requirements 38

4.2. Policy Management 38

4.2.1. Description 38

4.2.2. Stimulus/Response Sequences 38

4.2.3. Functional Requirements 38

4.3. Git Ops 39

4.3.1. Description 39

4.3.2. Stimulus/Response Sequences 39

4.3.3. Functional Requirements 39

4.4. Task Controller 39

4.4.1. Description 39

4.4.2. Stimulus/Response Sequences 40

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page v

© 2021. This work is licensed under a CC BY 4.0 license.

4.4.3. Functional Requirements 41

4.5. Trust Chain Verification 41

4.5.1. Description 41

4.5.2. Stimulus/Response Sequences 42

4.5.3. Functional Requirements 42

4.6. JSON-LD Signing and verification 43

4.6.1. Description 43

4.6.2. Stimulus/Response Sequences 43

4.6.3. Functional Requirements 43

4.7. eIDAS compliant signatures 43

4.7.1. Description 43

4.7.2. Stimulus/Response Sequences 43

4.7.3. Functional Requirements 43

4.8. DID Document Resolving 44

4.8.1. Description 44

4.8.2. Stimulus/Response Sequences 44

4.8.3. Functional Requirements 44

4.9. Trusted Caching 44

4.9.1. Description 44

4.9.2. Stimulus/Response Sequences 44

4.9.3. Functional Requirements 44

4.10. Trusted Information Exchange 45

4.10.1. Description 45

4.10.2. Stimulus/Response Sequences 45

4.10.3. Functional Requirements 45

5. Other Requirements 45

6. Verification 52

Appendix A: Glossary 54

Appendix B: Policy list 54

Appendix C: Overview GXFS Work Packages 57

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page vi

© 2021. This work is licensed under a CC BY 4.0 license.

List of Figures

Figure 1: Functional Architecture 5
Figure 2: Sketch of the expected Software Architecture 6
Figure 3: Policy Creation 13
Figure 4: Policy Evaluation 37
Figure 5: Policy Task Coordination 40
Figure 6: Trust Chain Verification 42

List of Tables

Table 1: References 4
Table 2: User Classes and Characteristics 8
Table 3: Apportioning of Requirements 9
Table 4: Policy Actions 14
Table 5:Requirements on cryptographic algorithms and key length 32
Table 6: Functional Requirements Policy Evaluation 38
Table 7: Functional Requirements Policy Management 39
Table 8: Functional Requirements Git Ops 39
Table 9: Functional Requirements Task Controller 41
Table 10: Functional Requirements Trust Chain Verification 42
Table 11: Functional Requirements JSON-LD Signing and verification 43
Table 12: Functional Requirements eIDAS compliant signatures 43
Table 13: Functional Requirements DID Document Resolving 44
Table 14: Functional Requirements Trusted Caching 45
Table 15: Functional Requirements Trusted Information Exchange 45

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 1

© 2021. This work is licensed under a CC BY 4.0 license.

1. Introduction

To get general information regarding Gaia-X and the Gaia-X Federation Services please refer to [TAD] and
[PRD].

1.1. Document Purpose

The purpose of the document is to specify the requirements of the Identity Management and Trust

Subcomponent “Trust Services API” with the intention of a European wide public tender for implementing

this software. Main audience for this document is attendees of the public tender, which are able to supply

an open-source software solution for the area of Signing/Validation, Secure Policy Management and Policy

Execution with the purpose to provide trusted services around Decision Evaluations and Verifications.

1.2. Product Scope

The product scope covers the functionalities of the Trust Services API. The aim of the Trust Services API is to

ensure a consistent level of trust between Gaia-X participants and components. The Trust Services API can

be used by all components. The creation and validation of digital signatures plays a particularly important

role here. The product scope includes signing and verifying of necessary data, enabling policy driven trust,

ensuring trust-chains between participants and validating eIDAS compliant signatures.

The scope also includes necessary tools (e.g., Command Line Scripts) to operate and maintain the created

software components in an enterprise environment with focus on high-availability, security and monitoring

and logging based on common standards. Documentation for developer, operator and user MUST be written

in markdown format which is public consumable over a publicly accessible source repository without access

limitations.

1.3. Definitions, Acronyms and Abbreviations

The IDM and Trust Architecture Overview Document [IDM.AO] MUST be considered and applied as the core

technical concept that includes also the Terminology and Glossary.

All requirements from other documents are referenced by [IDM.<document-id>.XXXXX] as defined in the

chapter “Methodology” in the document [IDM.AO].

1.4. References

[Aries.RFC0047] (Community) (2020), Aries RFC 0047: JSON-LD Compatibility

 https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0047-json-ld-

compatibility/README.md (Status 03-17-2021)

https://creativecommons.org/licenses/by/4.0/
https://docs.google.com/document/d/1yDQ1Nxwq_A0qdURSeKRj11-8vN10qguSjZ48K5pLcao/edit#bookmark=id.l690d3qy5095
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0047-json-ld-compatibility/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0047-json-ld-compatibility/README.md

Software Requirements Specification for IDM.TSA Page 2

© 2021. This work is licensed under a CC BY 4.0 license.

[AMD.EPY] AMD (2018), White Paper, AMD EPYC™ Hardware Memory Encryption

 https://www.amd.com/system/files/documents/cloud-security-epyc-hardware-

memory-encryption.pdf (Status 03-18-2021)

[AMD.SEV-SNP] AMD (2020), AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and

More

 https://www.amd.com/system/files/documents/cloud-security-epyc-hardware-

memory-encryption.pdf (Status 03-18-2021)

[BDD] Specflow (n.D.), Getting Started with Behavior Driven Development

 https://specflow.org/bdd/ (Status 03-18-2021)

[CryptoLen] Damien Giry, Prof. Jean-Jacques Quisquater (2020), Cryptographic Key Length

Recommendation

 https://www.keylength.com/en (Status 03-18-2021)

[CloudEvents] CloudEvents Authors, The Linux Foundation (2021), CloudEvents Specification

 https://cloudevents.io/ (Status: 03-27-2021)

[EUCS] European Union Agency for Cybersecurity (ENISA) (2020), EUCS – Cloud Services

Scheme

 https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme (Status: 03-

29-2021)

[Git.Tools] Scott Chacon and Ben Straub (2014), Pro Git (2nd Edition), 7.4 Git Tools - Signing

Your Work

 https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work (Status 03-04-2021)

[ISO25000] ISO 25000 Portal (n.d.), ISO/IEC 25010

 https://iso25000.com/index.php/en/iso-25000-standards/iso-25010 (Status: 03-17-

2021)

[IDM.AO] Gaia-X WP11 (2021), Architecture Overview

 IDM.AO (Base of functional specification)

[Intel.SGX] Intel (n.D.), Intel Software Guard Extension (SGX)

 https://www.intel.co.uk/content/www/uk/en/architecture-and-

technology/software-guard-extensions.html (Status 03-18-2021)

[JSON.LD] W3C Draft (2021), JSON-LD 1.1

 https://w3c.github.io/json-ld-syntax/ (Status 03-04-2021)

[LD.Proofs] W3C Draft (2020), Linked Data Proofs 1.0

1 Please refer to appendix C for an overview and explanation of the Work Packages (WP).

https://creativecommons.org/licenses/by/4.0/
https://www.amd.com/system/files/documents/cloud-security-epyc-hardware-memory-encryption.pdf
https://www.amd.com/system/files/documents/cloud-security-epyc-hardware-memory-encryption.pdf
https://www.amd.com/system/files/documents/cloud-security-epyc-hardware-memory-encryption.pdf
https://www.amd.com/system/files/documents/cloud-security-epyc-hardware-memory-encryption.pdf
https://specflow.org/bdd/
https://www.keylength.com/en
https://cloudevents.io/
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html
https://w3c.github.io/json-ld-syntax/

Software Requirements Specification for IDM.TSA Page 3

© 2021. This work is licensed under a CC BY 4.0 license.

 https://w3c-ccg.github.io/ld-proofs/ (Status 03-04-2021)

[NF.SPBD] Gaia-X Federation Service Non-functional Requirements Security & Privacy by

Design

 Please refer to annex “GXFS_Nonfunctional_Requirements_SPBD”

[PRD] Gaia-X, European Association for Data and Cloud, AISBL (2021): Gaia-X Policy Rules

Document

 Please refer to annex “Gaia-X_Policy Rules_Document_2104”

[RFC3161] C.Adams, P.Cain, D.Pinkas, R.Zuccherato (2001), Internet X.509 Public Key

Infrastructure, Time-Stamp Protocol (TSP)

 https://www.ietf.org/rfc/rfc3161.txt (Status: 03-17-2021)

[RFC6902] P.Bryan, M.Nottingham (2013), RFC6902 - JavaScript Object Notation (JSON) Patch

 https://tools.ietf.org/html/rfc6902 (Status: 03-13-2021)

[Rego] (Unknown) (n.D.), Rego Policy Language

 https://www.openpolicyagent.org/docs/v0.12.2/language-reference/ (Status: 03-16-

2021)

[Sem.Vers] Tom Preston-Werner (n.D.), Semantic Versioning 2.0.0

 semver.org (Status: 03-17-2021)

[SecVoc] W3C (2021), The Security Vocabulary

 https://w3id.org/security (Status 03-17-2021)

[SOG-IS] SOG-IS Crypto Working Group (2020), SOG-IS Crypto Evaluation Scheme - Agreed

Cryptographic Mechanisms

 https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-

Mechanisms-1.2.pdf (Status 03-18-2021)

[TDR] Gaia-X Federation Services Technical Development Requirements

 Please refer to annex “GXFS_Technical_Development_Requirements”

[TAD] Gaia-X, European Association for Data and Cloud, AISBL (2021): Gaia-X Architecture

Document

 Please refer to annex “Gaia-X_Architecture_Document_2103”

[TR02102-1] BSI (2020), Cryptographic Mechanisms: Recommendations and Key Lengths BSI TR-

02102-1

 https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelin

es/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=2 (Status 03-18-2021)

[TR02102-2] BSI (2020), Cryptographic Mechanisms: Recommendations and Key Lengths: Use of

https://creativecommons.org/licenses/by/4.0/
https://w3c-ccg.github.io/ld-proofs/
https://www.ietf.org/rfc/rfc3161.txt
https://tools.ietf.org/html/rfc6902
https://www.openpolicyagent.org/docs/v0.12.2/language-reference/
http://semver.org/
https://w3id.org/security
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.2.pdf
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.2.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=2

Software Requirements Specification for IDM.TSA Page 4

© 2021. This work is licensed under a CC BY 4.0 license.

Transport Layer Security (TLS) BSI TR-02102-2,

 https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/

TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=2 (Status 03-18-2021)

[Uni.Resolver] DIF (2020), Universal Resolver

 https://github.com/decentralized-identity/universal-resolver#readme (Status 03-04-

2021)

[URSA] Linux Foundation Project (2021), Hyperledger Ursa

 https://www.hyperledger.org/use/ursa (Status: 03-15-2021)

Table 1: References

1.5. Document Overview

The document describes the product perspective, functions and constraints. It furthermore lists the

functional and non-functional requirements and defines the system features in detail. The listed

requirements are binding. Requirements as an expression of normative specifications are identified by a

unique ID in square brackets (e.g. [IDM.ID.Number]) and the keywords MUST, MUST NOT, SHOULD, SHOULD

NOT, MAY, corresponding to RFC 2119 [RFC 2119], are written in capital letters (see also [IDM.AO] -

Methodology).

2. Product Overview

2.1. Product Perspective

The origin of the product is the requirement to support other components with “Trusted Services” in the

direction of policy evaluation, policy driven trust, trust anchor administration, DID services and signature and

validation services. To reach this goal, the product MUST provide HTTP Endpoints which are consumable by

components within the trusted security domain or provide the functions as a set of library-based

components. Additionally, the product shall contain functionality to enhance the trusted services by policy

built-in functions and be able to collect sufficient and validated data, e.g., for iterating evaluations, as well as

signing and validation of trust chains and trust sets. All policies can be partly predefined and partly

determined by the participants themselves. Policies SHOULD be manageable via GitOps principles and

connections to a secure storage MUST be ensured.

https://creativecommons.org/licenses/by/4.0/
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=2
https://github.com/decentralized-identity/universal-resolver#readme
https://www.hyperledger.org/use/ursa
https://tools.ietf.org/html/rfc2119

Software Requirements Specification for IDM.TSA Page 5

© 2021. This work is licensed under a CC BY 4.0 license.

Figure 1: Functional Architecture

2.2. Product Functions

The functions of the Trust Services component are provided case-dependent either as runtime or library

components. Runtime components MUST expose endpoints as REST services. In addition, policy

configuration with GitOps should be used to enable the provisioning and sharing of policies. The component

is part of the Gaia-X Trust and identity management toolstack and not centrally hosted. To properly maintain

and update, appropriate security measures MUST be in place. This includes role concepts, data storage

protection and access control. The overall functionality of the product MUST be auditable (GDPR compliant).

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 6

© 2021. This work is licensed under a CC BY 4.0 license.

Figure 2: Sketch of the expected Software Architecture

The core functions of the Trust Service API are:

● Verifying digital signatures of VCs

● Signing and verifying JSON-LD proof-chains and proof-sets

● Managing JSON-LD policies via GitOps

● Policy evaluation to ensure policy driven trust

● DID resolving endpoint to resolve DID documents

● Derived Verifiable Credentials SHOULD be supported in future releases

User interaction is expected at:

- Policy Administration Point

- Git Ops

2.3. Product Constraints

⏩ IDM.TSA.00001 The document IDM.AO is the common basis for this functional specification

The architecture document [IDM.AO] is an essential part of this specification and a prerequisite for

understanding the context. The specifications and requirements from the Architecture Document

MUST be considered during implementation. ⏪

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 7

© 2021. This work is licensed under a CC BY 4.0 license.

⏩ IDM.TSA.00002 Micro Service Architecture

For a better scale out and decentralization, the product architecture MUST a micro service

architecture. The modules MUST NOT be tightly integrated into the IAM solution, as Plugin or

Extensions, rather should interact with the said system through standard APIs and Protocols.⏪

⏩ IDM.TSA.00003 Policy Language

The policy language SHOULD be REGO [Rego] and MUST be uniform across within the trust services

product. ⏪

⏩ IDM.TSA.00004 Policy Decision

The policy decision should be evaluated by a separate policy engine. ⏪

⏩ IDM.TSA.00005 Policy Storage

The policy storage is based on Git and MUST use the secure integrity methods of the tooling. ⏪

⏩ IDM.TSA.00006 Universal DID Resolver

The product MAY have a dependency to existing Universal DID Resolvers, so far, they can run

locally.⏪

⏩ IDM.TSA.00007 Organization Key Pair(s)

The product MUST have one or multiple key pairs for signing policies or data evaluation results. This

key material has to be stored in a secure environment and the public key part MUST be published on

the identity network next to the DID. ⏪

⏩ IDM.TSA.00008 Open-Source Versions

The Open-Source components SHOULD be used in the latest versions. ⏪

2.4. User Classes and Characteristics

User Class Description Frequency Expertise Privilege Level Product Usage

Policy

Developer

The policy

developer develops

and maintains

Policies.

Low High Low Commits Policy

changes

Policy

Administrator

The policy

administrator

develops and

maintains policies

Low High High Administration

UX/Administrat

ion Endpoint

Git

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 8

© 2021. This work is licensed under a CC BY 4.0 license.

within the product

for usage in

production.

Repositories

Administrator Setup the system

and maintain git

repositories and

the operations of

the product

included the

network around it.

Low High Low Maintenance

External

Systems

Any API or

component which

accesses the

system from

outside.

High High Low Evaluation

Requests,

Cache Users,

Information

imports/export

s

Table 2: User Classes and Characteristics

2.5. Operating Environment

Please refer to [TDR] for further binding requirements regarding the operating environment.

⏩ IDM.TSA.00009 TLS Protected Endpoints

To protect the product endpoint(s), it’s necessary to support a network infrastructure e.g., load

balancers/proxies which MUST support TLS encryption. The encryption MUST meet the requirements

listed in the chapter for security requirements. ⏪

2.6. User Documentation

Please refer to [TDR] for further requirements regarding documentation.

⏩ IDM.TSA.00010 Participant Administration Documentation

The documentation MUST contain:

- Installation Manuals

- Cryptographic Initialization (if applicable)

- Description of Deployment/Compile Process

- Description of the Automatic Tests / Verification

- How to build the products from source code ⏪

⏩ IDM.TSA.00011 Participant Documentation

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 9

© 2021. This work is licensed under a CC BY 4.0 license.

The documentation MUST contain:

- Short Software Description/Usage

- Usage Guide

- GDPR Design Decisions

- Security Concept

- Operations Concept

- FAQ

- Keyword Directory ⏪

2.7. Assumptions and Dependencies

An understanding of the overall Gaia-X architecture and philosophy is necessary. Please refer to [TAD] und
[PDR].

2.8. Apportioning of Requirements

Feature Priority

Policy Evaluation 1

DID Document Resolving 1

Trusted Caching 1

Trusted Information Exchange 1

JSON-LD Verification 1

JSON-LD Signing 1

Task Coordination 2

Trust Chain Verification 2

Policy Management 3

Git Ops 3

eIDAS compliant Signatures 4

Table 3: Apportioning of Requirements

3. Requirements

Further binding requirements can be found in [TDR].

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 10

© 2021. This work is licensed under a CC BY 4.0 license.

3.1. External Interfaces

3.1.1. User Interfaces

⏩ IDM.TSA.00012 Policy Administration

The policy administration is done over git access points and open-source development tools which

are secured by an encrypted transport protocol. ⏪

3.1.2. Hardware Interfaces

⏩ IDM.TSA.00013 Security Hardware

Product does not include any hardware components but a connection to an HSM MUST be possible

as described into the security requirements chapter. ⏪

3.1.3. Software Interfaces

⏩ IDM.TSA.00014 Distributable Cache

The product needs an interface to the distributable cache to query cached data. The protocol

depends on the selected technology, but the interface MUST be supported by the policy language as

built-in function. ⏪

⏩ IDM.TSA.00015 DID Resolver

The DID resolver MUST provide an HTTP interface to use the resolving functions inside of the

trusted services. This interface MUST provide the functionality to use the DID resolver by provision

of the DID. ⏪

3.1.4. Communications Interfaces

⏩ IDM.TSA.00016 Trusted Information Endpoint

The trusted information endpoint provides a HTTP API to get identity information, trust lists and

other secured and signed information from the trusted services. ⏪

⏩ IDM.TSA.00017 Trusted Cache Endpoint

An endpoint to manage information which has to be securely cached into the cache system. ⏪

⏩ IDM.TSA.00018 Policy Evaluation Endpoint

This endpoint provides the functionality to evaluate policies, to obtain a result to a specific input.

⏪

⏩ IDM.TSA.00019 Signing/Validation Interface

This HTTP interface provides functionality around validation and signing of JSON LD files. ⏪

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 11

© 2021. This work is licensed under a CC BY 4.0 license.

3.2. Functional

3.2.1. Git Ops

⏩ IDM.TSA.00020 Secured Git Server

The product MUST contain a git server which provides the storage for policies and other content. It

MUST be secured with key material from the security infrastructure, and all developers need to check

in content only signed to track back the commits.

Interface

Git Interface

⏪

⏩ IDM.TSA.00021 Update policy git flow

The product MUST have an automated policy update-flow, that will always take the corresponding

main branch to a policy, sign it digitally for public or private repositories and publish the new policy.

It MUST follow the pull and merge principles of git.

 Interface

 GitOps

 Input

 Policies

 Output

 Updated and signed policies for the according repository (private / public)

 Acceptance criteria

1. A successful edited and signed policy

2. Successful tests of the policy

3. Activation of new policies

⏪

3.2.2. Policy Management Module

⏩ IDM.TSA.00022 Authentication for Policy Administration

The user MUST authenticate to get access to any action of the Policy Administration Point. The ways

how to authenticate against the administration point MAY be chosen. The recommended

communication channel MUST be encrypted and SHOULD use SSH or TLS.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 12

© 2021. This work is licensed under a CC BY 4.0 license.

Constraints

Use of internal authentication system to protect git in a standard way

Interface

Policy Administration Point

Input

Valid credentials

Output

Authenticated and secured connection to Administration Endpoint.

Acceptance criteria

1) Exception if no authenticated identity is present (401)

2) Access to the administration point, if an authenticated user is present.

⏪

⏩ IDM.TSA.00023 UX Behavior for Policy Administration

It SHOULD be possible to integrate the policy administration into standard IDE with standard

capabilities of code highlighting, code suggestions and beautifying. It SHOULD be able to load, edit,

copy, safe, test. The user interface MUST be able to generate policy groups and handle policy

information within different groups. Changed external signed policies, imported from other

participants, MUST be rejected from check-in.

Constraints

Depends on the Open-Source Tool

Interface

Policy Administration Point

⏪

⏩ IDM.TSA.00024 Policy versioning

 Policy versioning MUST follow semantic versioning standard [Sem.Vers]. ⏪

⏩ IDM.TSA.00025 Policy Bundles

Policy bundles MUST contain further information, e.g., data input JSON files. They MUST contain

meta-data and references like resolvable DIDs to be verifiable and trustworthy. The bundle MUST

be signed in a productive state or before the export. It MAY be chosen, how the signing and

verification is standardized. For instance, the metadata can be signed for the included files of the

bundle, or the bundle itself can be signed as a compressed package. ⏪

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 13

© 2021. This work is licensed under a CC BY 4.0 license.

⏩ IDM.TSA.00026 Policy Creation and Structure

The policies SHOULD be created in rego language [Rego] under a group stored in a git repository. The

content format for storing MAY be chosen. The repository structure SHOULD be chosen in a way that

the group policy name and version are given:

/{repo}/policies/{group}/{policyname}/{version}/evaluation

The exact format MAY be chosen, but all folders MUST map 1:1 to an URL which can be executed

over HTTP with a versioning and a group. For instance:

http://localhost:8080/aisbl/policies/aisbl/trustedIssuerList/1.0/evaluation

http://localhost:8080/aisbl/policies/mycompany/loginpolicy/1.0/evaluation

The HTTP routes MUST be created and set to active, if a commit in the productive repository was

successfully created or any additional repository was synchronized to the productive repository.

A policy flow can look like the following flow chart:

Figure 3: Policy Creation

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 14

© 2021. This work is licensed under a CC BY 4.0 license.

The content of the policies SHOULD be stored and signed as a bundle for an uncomplicated import

and export of other policy bundles. The bundle MUST contain the owner DID of the policy. For signing

a key pair MUST be used which is linked to the DID (public key inside of the DID document).

Acceptance Criteria

1) Available and responsive route after committing a policy and a takeover to production

2) No route available after deleting a policy from the productive repository.

3) Synchronized Policy Bundles are taking over to production and have active routes

4) Policy Bundles MUST be verifiable against DID public keys

⏪

⏩ IDM.TSA.00027 Policy Actions

Each policy route MUST have the capability to provide some static actions for future purposes in the

following pattern:

/{repo}/policies/{group}/{policyname}/{version}/{action}

Possible actions SHOULD be “evaluation” and “lock”. It MAY be solved in a different way, but the

actions MUST be statically in the URL.

Action Input Output Verbs Description

evaluation JSON Object JSON Object POST Evaluates a policy

and delivers a

result.

lock - - POST, DELETE Locks (POST) or

unlocks (DELETE)

the policy for

evaluations.

Table 4: Policy Actions

Acceptance Criteria

1) Evaluation action returns a policy result for an input

2) Policy is no longer evaluable, if lock for the policy was called

3) Policy is evaluable again, if unlock for the policy was called

⏪

⏩ IDM.TSA.00028 Policy Import and Export

The policy administrator MUST be able to configure policy import endpoints where the system

downloads automatically new policy bundles. The policy export endpoint itself MUST be configurable

in that way, that the policy administrator can decide which bundles from the productive repository

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 15

© 2021. This work is licensed under a CC BY 4.0 license.

can be exported. Each import and export MUST be signed with a key registered in the DID document

and verifiable against the public keys from the DID document defined in the bundle. For this purpose,

the DID resolver MUST be used. Import and export MUST be observable for the configured

repositories.

Acceptance Criteria

1) The export of a policy bundle MUST be signed with a keypair which is evaluable against the

public keys registered in the DID document

2) Import and Exports are observable

⏪

3.2.3. Universal DID Resolver

⏩ IDM.TSA.00029 DID Document Resolving

A universal DID resolver takes a DID as an input, obtains the data and constructs a standardized DID

document. Supported did methods MUST be DID:WEB, DID:IDU, DID:SOV, DID:IPID, DID:KEY. Others

MAY be supported as well. It is RECOMMENDED to use an existing universal resolver.

Interface

DID Resolve

Input

The request must follow the standard the supported DID methods pattern specifications.

Output

The responding DID document.

⏪

⏩ IDM.TSA.00030 DID Resolver HTTP Interface

The resolver functionality MUST be usable by an HTTP interface, that other components can easily

trigger and receive DID documents.

Interface

DID Resolve

Input

A DID.

Output

The responding DID document.

⏪

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 16

© 2021. This work is licensed under a CC BY 4.0 license.

3.2.4. Policy Decision Engine

⏩ IDM.TSA.00031 Call of external URLs

The decision engine MUST have the capability to call HTTP URLs with free chosen query parameters,

headers, and request bodies for any HTTP verb within the policy execution. This MUST be possible

out of the defined policy to load external data dynamically into the execution context. It MAY be

created also helper components e.g., built in functions, to support this feature outside of the policy

policy execution context.

Constraints

Policy Language

Policy Execution

Input

HTTP URL with Parameters, Header and Request Body.

Output

JSON HTTP Response.

⏪

⏩ IDM.TSA.00032 Support of Built-in Functions

The policy decision engine MUST support built-in functions to enhance the policy execution language

later with more complex functionality. (e.g., calculations, signings, hashing)

Constraints

Rego Policy Language [Rego]

 Acceptance Criteria

1) Documentation how the policy decision engine can be enhanced with new custom built in

functions

⏪

⏩ IDM.TSA.00033 Use of distributable cache in policy

The policy decision engine MUST support usage of the distributable cache. This SHOULD be realized

over built in functions to make the policy creation easy and intuitive, but it MAY be realized with

other protocols which MUST executable from the policy itself (e.g., HTTP).

Constraints

Rego Policy Language [Rego]

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 17

© 2021. This work is licensed under a CC BY 4.0 license.

 Acceptance Criteria

1) Cache content must be usable in the policy evaluation

⏪

⏩ IDM.TSA.00034 Policy Execution

The policy execution is a critical point in the product. The execution can reach millions of executions

at the same time in a very big system. This means the execution MUST be high paralyzed and the

architecture scalable. The execution MAY cache information like static data, policy rego content etc.

in memory to reach a high responsive design. The same cache MAY be used for policies within the

same repo, group and version to limit the memory usage. It MUST be able to support asynchronous

tasks or long running operations.

⏪

3.2.5. Policy Evaluator

⏩ IDM.TSA.00035 Consistent Policy Evaluation Routes

The generated routes by the management system MUST be consistent during an update of the policy.

It MAY be realized with additional open-source components within the product to fulfill this

requirement. It’s also allowed to set some requests temporarily on hold during the switch of policies

and their related data. To simplify the process, the policy store MAY be immutable.

Acceptance Criteria

1) All routes have the same policy applied before any external call can get a wrong result

during the switch process

⏪

⏩ IDM.TSA.00036 High Available Policy Evaluation Routes

The generated policy endpoints by the management system MUST be static, so that they can be

stored in the load balancer or infrastructure components. It’s not allowed to generate routes

temporarily or alias it in a way that they can match temporary other targets. It MUST be guaranteed

that the endpoints never execute different policies.

Acceptance Criteria

1) The endpoint MUST be mappable on a load balancer/API gateway.

2) The endpoint MUST have an availability up to 99,8%, also on policy change.

⏪

⏩ IDM.TSA.00037 Task Controller Integration

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 18

© 2021. This work is licensed under a CC BY 4.0 license.

The policy decision engine MUST be able to use the task controller for the instantiation of tasks and

tasks list. For this purpose, the engine SHOULD implement and build in function to support the usage

of the task controller so easy as possible.

Input

A task(list) name with input.

Output

A task id.

Acceptance Criteria

1) The policy is able to instantiate tasks and task lists

⏪

3.2.6. Task Controller

⏩ IDM.TSA.00038 Task Definition

 A task is a data structure which MUST contain at least:

- unique task identifier

- unique task name

- URL

- HTTP Action (GET, POST,)

- request header

- request body

- request policy

- response policy

- response header

- response body

- finalizer policy

- key metadata (key, namespace, scope)

- response code

- state

Each task SHOULD be held in memory during the processing. The distributable cache MAY be used.

From a security perspective, the task definitions SHOULD NOT be created dynamically.

⏪

⏩ IDM.TSA.00039 Task List Definition

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 19

© 2021. This work is licensed under a CC BY 4.0 license.

 A task list is a data structure which MUST contain at least:

- unique TaskList Identifier

- Task Groups

- state

- finalizer policy

- execution metadata

 Each task group MUST contain at least:

- a task name

- state

- finalizer policy

- execution metadata

 The task groups SHOULD contain Metadata to support the execution of the tasklist.

Each task list SHOULD be held in memory. The distributable cache MAY be used. From a security

perspective, the task list definitions SHOULD NOT be created dynamically.

⏪

⏩ IDM.TSA.00040 Task(list) Instantiation and State Check

To trigger the instantiation of the task(lists) the task controller MUST have an interface which is able

to instantiate a task or tasklist by entering the unique name and other parameters like key metadata

etc. Over this unique name the instance MUST be created. The result of the instantiation MUST return

a unique task id to identify the created task later over the state check over the interface. This state

check MUST return over the unique ID the state of the task(list). The states SHOULD be “created”,

“pending”, “done” and “gone”. If a HTTP interface is used, the states SHOULD be represented over

HTTP response codes. (201=created, 204=no content, 200=done,410=gone) Is the result “done”, and

the task(list) result was successfully delivered to the state requestor, the task can be removed from

the cache.

⏪

⏩ IDM.TSA.00041 Instantiation/Execution of Tasks

The task controller MUST be able to instantiate tasks in the described format of the task definition.

Available task definitions MUST be pre-configured by the policy administrator. If the task is created,

a background worker MUST handle the tasks asynchronously. The defined request policy in the task

MUST be executed before the HTTP call to get additional headers and the request body (It MUST be

also possible to push parameters into the task during the instantiation). All defined headers are put

into the HTTP request next to the key metadata and the result of the task is stored into the task

response body field, next to the response codes. If a response is received, the response policy

SHOULD be executed with the response body and headers to evaluate the state of the task. This

policy SHOULD decide then, if any further actions are necessary. When the final state of the task is

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 20

© 2021. This work is licensed under a CC BY 4.0 license.

reached, the finalizer policy is executed, before the final response body and the key metadata is

written to the distributable cache.

Acceptance Criteria

1) Task controller is able to instantiate and execute tasks

2) The result of the tasks is accessible over the distributable cache (key metadata)

3) Input parameters for the task request headers/request body/ key metadata are respected

during the instantiation

⏪

⏩ IDM.TSA.00042 Instantiation/Execution of Task Lists

The task controller MUST be able to instantiate task lists in the described format of the task list

definition. Available task list definitions MUST be pre-configured by the policy administrator. If the

task list is created, a background worker MUST handle the tasks asynchronously. The execution

metadata of the defined task lists controls the task processing by the task controller. Available

processing options SHOULD be sequential, parallel, and grouped. Depending on the processing

option, the task groups are executed, and the state is separately stored group by group. If each group

has a “done” state, the entire task list is done, the result can be finalized over the policy and the

result can be stored in the cache.

Acceptance Criteria

1) Task controller is able to instantiate and execute task lists

2) The result of the task lists is accessible over the distributable cache (key metadata)

3) Input parameters for the task list request headers/request body/key metadata are

respected during the instantiation

⏪

⏩ IDM.TSA.00043 Sequential processing

If a task list or task group is sequentially processed, the task controller MUST push the final result

from one task to the next one as input. If one item is failing the entire sequence is failing.

⏪

⏩ IDM.TSA.00044 Parallel processing

If a task list or task group is parallel processed, the task controller MUST execute everything in

parallel. If one item is failing, the controller SHOULD ignore this results in the finalization.

⏪

⏩ IDM.TSA.00045 Cache Event Subscription

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 21

© 2021. This work is licensed under a CC BY 4.0 license.

If a data update event occurs from the distributable cache, the task controller MUST execute a policy

which evaluates whether any further tasks must be created. If any task is configured, the tasks MUST

be created for execution. The task has the same metadata as the event. (key, namespace and scope)

For instance: A proof data object is inserted from the OCM into the cache. This object contains an

DID from the issuer. The policy evaluates the schema of the data object and returns Task

“IssuerProof”. The task controller inserts this task to the tasklist by adding the http URL of the OCM

proof manager with the DID of the issuer as parameter. Some seconds later, the proof from the issuer

arrives and the policy returns null (nothing to do).

Constraints

Distributable Cache Event

Policy Evaluation

Input

An Insert/Update Event

Output

A task result or null.

Acceptance Criteria

1) After an event, the task must be created as pre-configured (or dynamically by policy)

⏪

3.2.7. Secret Store

⏩ IDM.TSA.00046 Policy Secret Store API

The secret store MUST be able to deliver key-pairs to signature functions to support appropriate and

secure handling of sensitive key material during these operations. It’s also RECOMMENDED to align

all crypto operations and the secret store with the [IDM.OCM] team. ⏪

3.2.8. JSON-LD signatures and validations

⏩ IDM.TSA.00047 LD Proofs in JSON-LD

JSON-LD proofs SHOULD be supported to sign verifiable credentials and verifiable presentations and

verify all proofs within the JSON-LD data (including the embedded proofs of Verifiable Presentations).

It MUST follow the W3C guidelines for LD proofs [LD.Proofs]

⏪

⏩ IDM.TSA.00048 Proof Sets in JSON-LD

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 22

© 2021. This work is licensed under a CC BY 4.0 license.

JSON-LD proof sets SHOULD be supported to link multiple entities to the same data, when no order

of proof is required. Therefore, multiple proofs are attached to the linked data document. This can

be useful for contracts or shared policies. It MUST support signing and verifying the VCs.

 Example:

 {

 "@context": [

 "https://www.w3.org/2018/credentials/v1",

 "https://www.w3.org/2018/credentials/examples/v1"

],

 "title": "Hello World!",

 "proof": [{

 "type": "Ed25519Signature2018",

 "proofPurpose": "assertionMethod",

 "created": "2019-08-23T20:21:34Z",

 "verificationMethod": "did:example:123456#key1",

 "challenge": "2bbgh3dgjg2302d-d2b3gi423d42",

 "domain": "example.org",

 "jws": "eyJ0eXAiOiJK...gFWFOEjXk"

 },

 {

 "type": "RsaSignature2018",

 "proofPurpose": "assertionMethod",

 "created": "2017-09-23T20:21:34Z",

 "verificationMethod": "https://example.com/i/pat/keys/5",

 "challenge": "2bbgh3dgjg2302d-d2b3gi423d42",

 "domain": "example.org",

 "jws": "eyJ0eXAiOiJK...gFWFOEjXk"

 }]

}

⏪

⏩ IDM.TSA.00049 Proof Chains in JSON-LD

JSON-LD proof chains SHOULD be supported to link multiple entities to the same data, when proof

sequences are required. This can be useful for notary counter-signing a proof that had been created

on a document. It MUST support signing and verifying the VCs.

 Example:

 {

 "@context": [

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 23

© 2021. This work is licensed under a CC BY 4.0 license.

 "https://www.w3.org/2018/credentials/v1",

 "https://www.w3.org/2018/credentials/examples/v1"

],

 "title": "Hello World!",

 "proofChain": [{

 "type": "Ed25519Signature2018",

 "proofPurpose": "assertionMethod",

 "created": "2019-08-23T20:21:34Z",

 "verificationMethod": "did:example:123456#key1",

 "domain": "example.org",

 "jws": "eyJ0eXAiOiJK...gFWFOEjXk"

 },

 {

 "type": "RsaSignature2018",

 "proofPurpose": "assertionMethod",

 "created": "2017-09-23T20:21:34Z",

 "verificationMethod": "https://example.com/i/pat/keys/5",

 "domain": "example.org",

 "jws": "eyJ0eXAiOiJK...gFWFOEjXk"

 }]

}

⏪

3.2.9. Information Hub

⏩ IDM.TSA.00050 Trusted information export

It MUST be possible to export data towards other HTTP services and components by using the

information hub. The source of the data MUST be the distributable cache, any policy output or both.

Signing the exported data SHOULD be done via a policy, but the format MUST be JSON LD content

with LD-Proofs, signed by the participants DID key pair. The export output MUST be configurable for

JSON transformations (e.g. modification of verifiable presentations), export policies and creation

cache intervals. (the export files SHOULD not be created on each call). The export endpoint

protection MUST be configurable by the policy administrator.

Constraints

Policy Evaluator

Distributable Cache

Interface

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 24

© 2021. This work is licensed under a CC BY 4.0 license.

Trusted Information Endpoint

Input

An export HTTP request

Output

A signed JSON-LD response with LD-Proof, if export is allowed.

 Acceptance criteria

1) The exported information MUST be signed

2) The exported information MUST be signed and verifiable by a resolvable DID or any public

key

3) Policy export configurations MUST only be created and editable by policy administrators

⏪

⏩ IDM.TSA.00051 Trusted information import

It MUST be possible to import data towards the trust services from other HTTP services and

components. Verifying the imported data SHOULD be done via a policy. The import sources MUST be

configurable for JSON transformations, accept policies, import interval, http sources and allowed

DIDs. The DID service endpoints MUST be respected in the configuration as well. The imported data

MUST be pushed to the distributable cache after a successful validation against the DIDs public key.

The import endpoint protection MUST be configurable by the policy administrator.

Interface

Trusted Information Endpoint

Policy Evaluator

Distributable Cache

Input

An import HTTP request

Output

A signed JSON-LD response with LD-Proof.

Acceptance criteria

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 25

© 2021. This work is licensed under a CC BY 4.0 license.

1) The data import(er) MUST be trust-worthy

2) The imported information MUST be signed and verifiable by a resolvable DID or any public

key.

3) Policy import policies MUST only be created and editable by policy administrators

⏪

⏩ IDM.TSA.00052 Content Modifications

The information hub MUST support content modifiers which deliver functionalities like flat JSON files,

transform outputs or sign JSON-LD files during the import and exports. This can be supported by any

policy for configuration purposes. For instance, a request maps to a policy evaluation result and to a

cache content. One is XML and one is JSON. If the desired output is JSON, one file must be converted

and the second merged to the first one, before the file is responded to by the requester.

⏪

⏩ IDM.TSA.00053 Trusted Identity Information

The endpoint MUST deliver to a key, namespace and scopes, information about an identity. This is a

GET action which returns a flatten JSON file. This functionality maps to the description under

“Content Access” in the distributable cache. If one scope is missing or the TTL acceptance value is not

high enough (e.g., minimum TTL of 3 seconds), the reload MUST be triggered over the task controller,

if configured. In this case a task id MUST be returned to indicate an asynchronous operation. The

external caller MUST be able to send the TTL acceptance value within the call (e.g., TTL acceptance

of 0 seconds).

⏪

3.2.10. Distributable Cache

⏩ IDM.TSA.00054 In Memory Caching

The distributable cache MUST be implemented as an in-memory solution. From a privacy and GDPR

perspective, the cache MUST NOT implement any persistence or recovery.

Acceptance Criteria

1) The cache is empty when the environment is restarted

2) Given Input is hold in memory

⏪

⏩ IDM.TSA.00055 Cache Distribution

The cache content MUST be distributable over different servers, which can dynamically join or leave

the cluster. The connections between the servers and/or the data distribution itself MUST be secured

with cryptographic mechanisms. (e.g., TSL, Encryption, SPIFFE etc.)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 26

© 2021. This work is licensed under a CC BY 4.0 license.

Acceptance Criteria

1) New Server can join and the cache is synchronized, a call against the new server delivers a

result

2) One Server can leave without interrupt the rest of the cluster

⏪

⏩ IDM.TSA.00056 Internal Cache Interface

The internal cache interface MUST use a technology, to reach the highest performance. The cache

MUST be accessible over an internal interface of the programming language or other ways which

increase the performance.

⏪

⏩ IDM.TSA.00057 Key Metadata

For the cache access, the following key metadata MUST be used:

- Key (string)

- Namespace (string)

- Scope (string)

 The data types can be chosen differently, depending on the cache technology.

⏪

⏩ IDM.TSA.00058 Content Format

The content of the cache MUST support the storage of JSON or similar structures (e.g., CBOR,

Protobuf). Other formats MAY be supported as well, but Memory footprint MUST be considered with

the choice of the format. The content MUST be converted for input and output in the cache. For

instance, if the choice is to use a binary format, JSON can be converted to binary and back, to support

more efficient memory usage.

⏪

⏩ IDM.TSA.00059 Content Access

The cached content MUST be accessible over a key (e.g., a DID), a namespace and an array of scopes,

which results in an array of JSON documents. For instance, the access to the cache can be the

following:

 Key: DID:sov:2358585

 Namespace: Login

 Scopes: administration, read, visitor

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 27

© 2021. This work is licensed under a CC BY 4.0 license.

Result: {“name”:”userX”,”iss”:did:sov:33333},

{“membership”:”company”,”iss”:did:sov:1111}

To optimize the access, it MAY be optimized by flatten the access pattern like:

 Key: DID:sov:2358585

Namespace: Login:administration

Independent from the format, the result for the accessor MUST be a flatten JSON structure. In the

flattening step, it SHOULD namespace duplicated claims if they are semantically different (e.g., using

JSON-LD context). If two JSON structures bring a duplicated claim which is semantically the same

claim (say two JSON structures bring Name and Surname, but the values are different) then a policy

shall decide whether to: take one of them or discard all of them.

Constraints

Supported data format of the cache technology

Policy Decision Engine

Acceptance Criteria

1) Result of a flat JSON file to an DID, namespace and scopes

2) Duplicate Handling during the flattening of multiple documents

⏪

⏩ IDM.TSA.00060 Content TTL

The content time to live time, SHOULD be set over a policy depending on the received data input.

Constraints

Policy Decision Engine

Input

A JSON Structure.

Output

A time to live value which is set during the cache store/update operation.

Acceptance Criteria

1) Policy decided which TTL is used

2) Object is removed after the expiration

⏪

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 28

© 2021. This work is licensed under a CC BY 4.0 license.

⏩ IDM.TSA.00061 External Cache Input

The external cache input MUST be implemented over HTTP. The request body MUST contain the

JSON payload which has to be cached. Within the headers the access keys have to be sent.

(namespace, scope, key) The supported actions for the input API MUST be GET, PUT, POST and

DELETE. PATCH is OPTIONAL, to get, create, update and delete cache content. The key metadata for

the input MUST be evaluated by a policy before inserted in the cache.

Constraints

Key metadata is selected by the policy (key, namespace, scope)

Interfaces

Trusted Cache Endpoint

Input

A JSON structure, with a key, namespace and scopes.

Output

An appropriate HTTP response.

Acceptance Criteria

1) If successful, but not yet in the cache, the system returns 201

2) If successful, but just updated, the system returns 200

3) If not successful, the system returns 400

⏪

⏩ IDM.TSA.00062 Input Observation

The distributable cache MUST provide an event when new inputs are received over the trusted cache

endpoint. This event MUST contain the access key to identify the created item in the cache.

Input

An JSON structure, and key metadata in the header.

Output

An event is fired to the subscribers with the key metadata (For instance the Task Controller or the

Information Hub)

⏪

⏩ IDM.TSA.00063 Input Subscriptions

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 29

© 2021. This work is licensed under a CC BY 4.0 license.

To subscribe on external changes, the Cloud Events Pattern MUST be supported. The incoming data

MUST be stored in the cache.

⏪

3.2.11. eIDAS

⏩ IDM.TSA.00064 eIDAS compliant Signature Creation / Validation

Signatures must be generated/verified in compliance with eIDAS so that legally secure trust can be

achieved. This should include the eIDAS signature types basic, advanced, and qualified. The

implementation variant must be selected individually in coordination with the used technology.

⏪

3.3. Other Nonfunctional Requirements

3.3.1. HTTP Requirements

⏩ IDM.TSA.00065 HTTPS

All HTTP Endpoints MUST be protected by TLS 1.2 (all protocol version numbers SHOULD be

superseded by upcoming standards) Each endpoint of the product MUST support TLS certificates

which are configurable by the administrator of the system. ⏪

⏩ IDM.TSA.00066 HTTP Protocol Definitions

All HTTP Endpoints MUST follow RFC 72312 and RFC 57893, but it MAY be chosen what of the

protocols is necessary to realize the functionality. For problem reports the RFC78074 MUST be used

in combination with Standard HTTP Error Codes. ⏪

3.3.2. Configuration

⏩ IDM.TSA.00067 Configuration

All components MUST support one of the major configuration formats (yaml, json, ini, environment

variables) wherever configuration is required. If environment variables are overwriting an actively

set configuration, a warning SHOULD be logged. ⏪

3.3.3. Logging Requirements

2 https://tools.ietf.org/html/rfc7231
3 https://tools.ietf.org/html/rfc5789
4 https://tools.ietf.org/html/rfc7807

https://creativecommons.org/licenses/by/4.0/
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc7807

Software Requirements Specification for IDM.TSA Page 30

© 2021. This work is licensed under a CC BY 4.0 license.

⏩ IDM.TSA.00068 Data Minimization

From GDPR perspective the product MUST NOT log data which is related to personal information.

(e.g., Usernames, Birth Dates etc.) The product MUST only log data, which is relevant to technical

operations, except for the purpose that, in the event of an incident, enable reconstruction of the

sequence of the message exchange for establishing the place and the nature of the incident. The data

shall be stored for a period of time in accordance with national requirements and, as a minimum,

shall consist of the following elements:

(a) node's identification

(b) message identification

(c) message data and time

All logged data/information MUST be documented in the GDPR design decisions for a GDPR review.

⏪

⏩ IDM.TSA.00069 Logging Frameworks

The product MUST support logging frameworks e.g., graylog, fluentD or logstash to support logging

and analysis by enterprise infrastructures. The supported framework MAY be chosen for the first

version, but it MUST support potentially the most common open-source logging solutions. The final

solution MUST be aligned with the other subcomponents. It MUST be sketched in the operations

concept how the support of multiple solutions is given in the future. ⏪

3.3.4. Monitoring Requirements

⏩ IDM.TSA.00070 Monitoring Frameworks

The product MUST support monitoring frameworks e.g., grafana to support the analysis of incoming

data by the enterprise infrastructures. The supported framework MAY be chosen for the first version,

but it MUST support potentially the most common monitoring solutions. (e.g., Zabbix) The final

solution MUST be aligned with the other subcomponents. It MUST be sketched in the operations

concept how the support of multiple solutions is given in the future. ⏪

⏩ IDM.TSA.00071 Alerting Frameworks

Additional to the Monitoring Frameworks an Alerting framework (e.g., Prometheus or Cloud Based)

MUST/MAY be in place at least in the System nodes to promptly communicate to e.g., System

Administrators or owners the occurrence of an event in form of a security incident or

application/system malfunction or anomaly. ⏪

3.3.5. Performance Requirements

⏩ IDM.TSA.00072 Performance Scalability

The performance of the product MUST be scalable. This MUST be demonstrated in a load

demonstration example. The optimal scalability SHOULD be in the best case a linear behavior of

minimum 50% more performance by each additional instance. ⏪

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 31

© 2021. This work is licensed under a CC BY 4.0 license.

⏩ IDM.TSA.00073 Performance by Design

The product SHOULD be designed and implemented in a way, that the implementation is non-

blocking and performance oriented. It SHOULD be a microservice architecture, but it MAY follow

other concepts. The decision MUST be documented. ⏪

3.3.6. Safety Requirements

⏩ IDM.TSA.00074 Recovery Point Objective (RPO)

The RPO for the product MUST be 0 for a single and multiple instance(s). It MAY be higher by

configuration or deployment, decided by the user. ⏪

⏩ IDM.TSA.00075 Recovery Time Objective (RTO)

The RTO for the product MUST be one Minute for a single instance. For multiple instances the RTO

MUST be 0. ⏪

⏩ IDM.TSA.00076 Mitigation of Single Point of Failure threats

Critical components in the Gaia-X Ecosystem MUST be identified and strategies to warranty their

availability and scalability MUST be implemented. ⏪

3.3.7. Security Requirements

3.3.7.1. General Security Requirements

Each Gaia-X Federation Service SHALL meet the requirements stated in the document “Specification of non-

functional Requirements Security and Privacy by Design” [NF.SPBD].

Federation Services specific requirements will be documented in the next chapter.

3.3.7.2. Service Specific Security Requirements

This chapter will describe the service specific requirements, which will extend the requirements defined in

the chapter above.

⏩ IDM.TSA.00077 Cryptographic Algorithms and Cipher Suites

Cryptographic algorithms and TLS cipher suites SHALL be chosen based on the recommendation from

the German Federal Office for Information Security (BSI) or SOG-IS. These recommendations and the

recommendations of other institutions and standardization organization are quite similar5

[CryptoLen]. The recommendations can be found in the technical guidelines6 TR 02102-1 [TR02102-

1] and TR 02102-2 [TR02102-2] or SOG-IS Agreed Cryptographic Mechanisms7 [SOG-IS]. ⏪

5 See https://www.keylength.com/en for a comparison

6 See https://www.bsi.bund.de/EN/Service-Navi/Publications/TechnicalGuidelines/tr02102/tr02102_node.html

7 See https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.2.pdf

https://creativecommons.org/licenses/by/4.0/
https://www.keylength.com/en
https://www.bsi.bund.de/EN/Service-Navi/Publications/TechnicalGuidelines/tr02102/tr02102_node.html
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.2.pdf

Software Requirements Specification for IDM.TSA Page 32

© 2021. This work is licensed under a CC BY 4.0 license.

⏩ IDM.TSA.00078 Digital Certificates

For digital certificates and cryptographic signatures in the context, the major requirements on

cryptographic algorithms and key length MUST meet the definitions in the following table (as of

2020):

Signature Algorithm Key size Hash function

EC-DSA

Min. 250 Bit SHA-2 with an output length ≥

256 Bit or better

RSA-PSS

(recommended)

RSA-PKCS#1 v1.5

(legacy)

Min. 3000 Bit RSA Modulus (n)

with a public exponent e > 2^16

SHA-2 with an output length ≥

256 Bit or better

DSA Min. 3000 Bit prime p

250 Bit key q

SHA-2 with an output length ≥

256 Bit or better

Table 5:Requirements on cryptographic algorithms and key length

Named curves SHALL be used for EC-DSA (e.g., NIST-p-256). ⏪

⏩ IDM.TSA.00079 TLS Certificate Validity Periods

In general, the recommended validity period for a certificate used in the system should be one year

or less. Under some circumstances (for example RootCA) the certificate validity can be extended.

Certificate owners MUST ensure that valid certificates are renewed and replaced before their

expiration to prevent service outages.⏪

⏩ IDM.TSA.00080 Security by Design

The software security MUST be from the beginning a design principle. Means separation of concerns,

different administrative roles, especially for private key material and separate access to the data

MUST be covered from the first second. It MUST be described in the security concept, what are the

different security risks of the product and how they are mitigated (e.g., by Threat Modeling Protocols)

⏪

⏩ IDM.TSA.00081 Installation of Critical Security Updates

Node operators SHALL deploy security critical updates without undue delay. ⏪

⏩ IDM.TSA.00082 Avoid HTTP Request Smuggling

To avoid Request Smuggling attacks, the product MUST implement a standard which handles this

kind of attack by design, because the attack vector results in an insufficient implementation of the

header handling. The chosen way to handle it MUST be shared to the other implementers of all other

subcomponents within IDM & Trust and MUST be described in the security concept. ⏪

⏩ IDM.TSA.00083 HTTP Pentesting

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 33

© 2021. This work is licensed under a CC BY 4.0 license.

All HTTP parts of the product has to be pen tested, for the following criteria:

1) Unauthorized Access to the System MUST be tested

2) Unauthorized Actions MUST be triggered without a user action

3) Endpoints MUST be tested for HTTP smuggling attack vectors

4) If a datastore is present over HTTP, illegal data access MUST be tested

It’s RECOMMENDED to test more attack vectors and document it for the purpose to mitigate it in

later versions. ⏪

⏩ IDM.TSA.00084 Storage of Secrets

The storage of secret information such as private keys MUST take place in state-of-the-art secure

environments to protect secret data confidentiality and integrity. Examples of this are Secure

Enclaves, TPMs, HSM or Secure Vaults. In case (Personal) Agents are not equipped with a secure

storage it MAY also be possible to store the secrets in a third party (e.g., Cloud) provider (e.g., Secure

Wallet) that MUST provide overall the same level of security as the aforementioned methods. ⏪

⏩ IDM.TSA.00085 Secret Distribution and Usage

The product MUST ensure interoperability of cryptographic primitives and components by public

standards and MUST use secure state of the art methods to create and import secrets into the secure

storage, as well as performing cryptographic operations (e.g., encryption or digital signatures). For

Key distribution, state of the art DKMS methods MUST be implemented. ⏪

⏩ IDM.TSA.00086 Support for Potential Requirements for Secret Storages

Devices that hold cryptographic information and perform cryptographic functions MUST be

compliant with the standard PKCS #11. Moreover, the products MUST be potentially eligible for a

FIPS-140-2 or ETSI/Common Criteria certification with the minimum-security level necessary to

operate securely in the Gaia-X ecosystem. Security Levels in FIPS-140-2 range from 1 to 4. Current

HSM Cloud Service offerings (AWS, Azure, GCP) are Level 3 (Source:

https://en.wikipedia.org/wiki/FIPS_140-2). ⏪

⏩ IDM.TSA.00087 Special Availability and Scalability Requirements for Secret Storage Components

Secret Storage components play a central role in storage, encryption, and digital signing in the Gaia-

X ecosystem, thus they can become a single point of failure for a Gaia-X participant, for example an

organization. Therefore, methods and procedures to ensure the availability and scalability of the

Secret Storage functionality MUST be implemented. ⏪

⏩ IDM.TSA.00088 Authorization Concept

Access rights to policies and rules must follow the principle of least privilege. Based on this principle,

an authorization concept must be developed. ⏪

https://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/FIPS_140-2

Software Requirements Specification for IDM.TSA Page 34

© 2021. This work is licensed under a CC BY 4.0 license.

⏩ IDM.TSA.00089 Policy data signing

The policy data MUST be signed digitally to ensure data integrity. ⏪

⏩ IDM.TSA.00090 Secure Timestamps

All timestamps MUST be issued according to RFC 31618. ⏪

⏩ IDM.TSA.00091 Security W3C Vocab

The product SHOULD implement functionalities to enable stable security algorithms according to

[SecVoc] from the W3C in compliance to [SecOps]. Unstable algorithms MAY be considered. [URSA]

provides open-source algorithms and MUST be considered for the product. ⏪

⏩ IDM.TSA.00092 Trusted Computing

It’s RECOMMENDED to consider from the beginning, trusted computing principles with secure

enclave concepts, to ensure that security technologies can be integrated in the future releases, for

instance Intel SGX [Intel.SGX], AMD SEV [AMD.SEV-SNP] or other technologies. ⏪

3.3.8. Software Quality Attributes

⏩ IDM.TSA.00093 Quality Aspects

The software MUST meet the following requirements:

● The quality standards MUST meet ISO 25010 [ISO25000]

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

● Robustness / Reliability

● Performance

● Availability must be 24/7

● Interoperability with the other work packages9

● Security

● Adaptability / expandability

● Maintainability and Code Quality

● Scalability

Major security concerns regarding design and implementation MUST be documented and highlighted

to the steering board. Minor security concerns SHALL be documented and mitigated. ⏪

3.4. Compliance

⏩ IDM.TSA.00094 GDPR Audit Logging

8 https://tools.ietf.org/html/rfc3161

9 Please refer to appendix C for an overview and explanation of the Work Packages (WP).

https://creativecommons.org/licenses/by/4.0/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://tools.ietf.org/html/rfc3161

Software Requirements Specification for IDM.TSA Page 35

© 2021. This work is licensed under a CC BY 4.0 license.

 All GDPR relevant access to personal relevant data MUST be logged for a later audit. ⏪

⏩ IDM.TSA.00095 GDPR Data Processing

If it is necessary to process person-relevant data, it MUST be earmarked to a clearly defined business

process, which has to be described in the GDPR design decisions. All person relevant data MUST be

deleted after the processing, if applicable. ⏪

3.5. Design and Implementation

Please also refer to [TDR] for further requirements.

3.5.1. Distribution

⏩ IDM.TSA.00096 Config Data Distribution

The product SHOULD support a global data distribution of config data to synchronize configurations

between multiple regions in the world. Built-in synchronization technology (asynchronous and

synchronous) MAY be used. ⏪

3.5.2. Maintainability

⏩ IDM.TSA.00097 Micro Service Architecture

For a better scale out, maintainability and decentralization, the product architecture MUST have a

micro service architecture. Each microservice MUST NOT be limited on the lines of code or number

of days to implement it. The service “size” SHOULD be oriented on the fine granular business

capabilities. (e.g., Order, ListMenu, Payment). ⏪

⏩ IDM.TSA.00098 Domain Driven Design

To support the micro service architecture within the maintainability, it MUST be declared a domain

model before realization. The software description MUST explain which domain model was chosen,

which services contain it and how it scales. This MUST be documented in the public code repository

to support future enhancements for new developers. ⏪

3.5.3. Operability

⏩ IDM.TSA.00099 FTE Estimation

The product MUST be designed so that over scripts and tools one FTE within a Month SHOULD host

and operate the product without any third-party help. It MUST be sketched in the operations concept

how this can be achieved. If this target is not reachable it MUST be explained and described why the

effort is higher and appropriate. ⏪

3.5.4. Interoperability

⏩ IDM.TSA.00100 Interoperability of IT security features and algorithms

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 36

© 2021. This work is licensed under a CC BY 4.0 license.

The following interoperability requirements of the respective IT security features and algorithms

MUST be ensured across the system components:

● Interoperability of crypto algorithms and protocols (including the novel peer-reviewed ones

through the established bodies and communities)

● Interoperability of secure secret transfer protocols (such as the holistic usage of PKCS#11 for

HSM communication, etc.)

● Format interoperability of crypto material (such as the holistic usage of PKCS#12 for relevant

cases) ⏪

4. System Features

4.1. Policy Evaluation

4.1.1. Description

The policy evaluation provides functionality around the execution of policies. This includes the provisioning

of versioned HTTP routes to execute the policy, synchronous and asynchronous policy evaluation, usage of

external HTTP resources within the execution and a policy decision engine to create JSON response for a

given JSON request and helper functionality around it. For instance, the caching of results or the inclusion of

static JSON documents into the policy decisions, to evaluate more complex policies. All policies and static

documents for the execution must be loaded from the encrypted hard disk into memory to guarantee the

maximum execution speed. Temporary JSON documents can be stored into an open-source database for

caching and SHOULD be deleted when no longer required. Any process or user behaves as an actor if the

policy route was called.

4.1.2. Stimulus/Response Sequences

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 37

© 2021. This work is licensed under a CC BY 4.0 license.

Figure 4: Policy Evaluation

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 38

© 2021. This work is licensed under a CC BY 4.0 license.

4.1.3. Functional Requirements

Functional Requirement

⏩ IDM.TSA.00034 Policy Execution

⏩ IDM.TSA.00035 Consistent Policy Evaluation Routes

⏩ IDM.TSA.00036 High Available Policy Evaluation Routes

Table 6: Functional Requirements Policy Evaluation

4.2. Policy Management

4.2.1. Description

The policy management provides functionalities around the signing, validation, import, export, and merge of

policies from internal and external policy repos. This is necessary to ensure that only trusted policies are

imported from trusted resources. The feature must help and support the policy administrator in decisions to

trust a policy repository from outside, trust imported policies, sign policies for export, export specific policies

and merge changes into the productive repository. This feature can be automated by a continuous

integration system (e.g., Jenkins), but it SHOULD include configurable manual reviewing steps to ensure that

the signing of policies MUST be done by an authorized person.

The configuration from external policy repositories and the export of internal policies MUST be a manual

step.

4.2.2. Stimulus/Response Sequences

Not applicable.

4.2.3. Functional Requirements

Functional Requirement

⏩ IDM.TSA.00021 Update policy git flow

⏩ IDM.TSA.00022 Authentication for Policy Administration

⏩ IDM.TSA.00023 UX Behavior for Policy Administration

⏩ IDM.TSA.00024 Policy versioning

⏩ IDM.TSA.00025 Policy Bundles

⏩ IDM.TSA.00026 Policy Creation and Structure

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 39

© 2021. This work is licensed under a CC BY 4.0 license.

⏩ IDM.TSA.00027 Policy Actions

⏩ IDM.TSA.00028 Policy Import and Export

Table 7: Functional Requirements Policy Management

4.3. Git Ops

4.3.1. Description

The feature provides a GIT server which is only reachable over a protected connection and configured to sign

checked in data. The server must support file encryption. The server MUST only be reachable internally but

MUST be configurable by the administrator to enable the access for employees from outside via secure

remote access. Administration of policies MUST follow the “policy as code” and “branch model” principles by

Git. The feature MUST allow the download of repositories. Policies MUST be assigned to according groups

and signed before check-ins10.

4.3.2. Stimulus/Response Sequences

Not applicable.

4.3.3. Functional Requirements

Functional Requirement

⏩ IDM.TSA.00020 Secured Git Server

⏩ IDM.TSA.00021 Update policy git flow

⏩ IDM.TSA.00022 Authentication for Policy Administration

Table 8: Functional Requirements Git Ops

4.4. Task Controller

4.4.1. Description

The task controller feature provides an API which is able to handle asynchronous task lists. Each task

represents one single action which executes an HTTP URL. Each task has a unique id and stores its result in

the distributable cache for a later processing. Task lists can be preconfigured in the repository by a name, to

create a new task subset more easily from a policy or any other component (e.g., a 1 to many task mapping).

The task execution is asynchronous, and the result can be queried over the task(list) id, to query the state of

the processing.

10 https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work

https://creativecommons.org/licenses/by/4.0/
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work

Software Requirements Specification for IDM.TSA Page 40

© 2021. This work is licensed under a CC BY 4.0 license.

4.4.2. Stimulus/Response Sequences

Figure 5: Policy Task Coordination

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 41

© 2021. This work is licensed under a CC BY 4.0 license.

4.4.3. Functional Requirements

Functional Requirement

⏩ IDM.TSA.00038 Task Definition

⏩ IDM.TSA.00039 Task List Definition

⏩ IDM.TSA.00040 Task(list) Instantiation and…

⏩ IDM.TSA.00041 Instantiation/Execution of Tasks

⏩ IDM.TSA.00042 Instantiation/Execution of Task Lists

⏩ IDM.TSA.00043 Sequential processing

⏩ IDM.TSA.00044 Parallel processing

⏩ IDM.TSA.00045 Cache Event Subscription

Table 9: Functional Requirements Task Controller

4.5. Trust Chain Verification

4.5.1. Description

To ensure trust within multiple participants it is necessary to validate trust chains that could have multiple

asynchronous verifications. Such behavior requires the need for long-running operations in the policy

decision engine. Necessary information SHOULD be cached to improve the execution time and MUST be

deleted after a reasonable time.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 42

© 2021. This work is licensed under a CC BY 4.0 license.

4.5.2. Stimulus/Response Sequences

Figure 6: Trust Chain Verification

4.5.3. Functional Requirements

Functional Requirement

⏩ IDM.TSA.00041 Instantiation/Execution of Tasks

⏩ IDM.TSA.00042 Instantiation/Execution of Task Lists

⏩ IDM.TSA.00043 Sequential processing

⏩ IDM.TSA.00045 Cache Event Subscription

Table 10: Functional Requirements Trust Chain Verification

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 43

© 2021. This work is licensed under a CC BY 4.0 license.

4.6. JSON-LD Signing and verification

4.6.1. Description

The feature provides verification and signature functionality of LD-Proofs embedded in JSON-LD files. The

functionality is an internal HTTP API, but the core crypto functionality has to be provided as a separate library

and SHOULD run within a secure environment.

4.6.2. Stimulus/Response Sequences

An input JSON-LD file.

4.6.3. Functional Requirements

Functional Requirement

⏩ IDM.TSA.00047 LD Proofs in JSON-LD

⏩ IDM.TSA.00048 Proof Sets in JSON-LD

⏩ IDM.TSA.00049 Proof Chains in JSON-LD

Table 11: Functional Requirements JSON-LD Signing and verification

4.7. eIDAS compliant signatures

4.7.1. Description

To provide eIDAS compliant signatures the feature should be able to generate and validate eIDAS compliant

signatures. In consideration of the different eIDAS types, legal signatures should be considered and a bridge

functionality to sign the data should be implemented. A secure environment MUST be provided to store and

execute the necessary functions (signature, validation) and SHOULD require at least two factor

authentication.

4.7.2. Stimulus/Response Sequences

A signing or verification request of a JSON-LD structure.

4.7.3. Functional Requirements

Functional Requirement

⏩ IDM.TSA.00064 eIDAS compliant Signature Creation / Validation

Table 12: Functional Requirements eIDAS compliant signatures

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 44

© 2021. This work is licensed under a CC BY 4.0 license.

4.8. DID Document Resolving

4.8.1. Description

The did resolving feature provides capabilities to resolve a did document for different did methods and

trusted DID document reading. For this feature we RECOMMEND the Universal DID resolver specified by DIF

(2020), Universal Resolver.

4.8.2. Stimulus/Response Sequences

An incoming DID resolve request over a secure connection.

4.8.3. Functional Requirements

Functional Requirement

⏩ IDM.TSA.00029 DID Document Resolving

⏩ IDM.TSA.00030 DID Resolver HTTP Interface

Table 13: Functional Requirements DID Document Resolving

4.9. Trusted Caching

4.9.1. Description

The trusted caching provides the functionality to store securely in memory data for identities and related

information for trust evaluation.

4.9.2. Stimulus/Response Sequences

Request from outside or internal trigger.

4.9.3. Functional Requirements

Functional Requirement

⏩ IDM.TSA.00054 In Memory Caching

⏩ IDM.TSA.00055 Cache Distribution

⏩ IDM.TSA.00056 Internal Cache Interface

⏩ IDM.TSA.00057 Key Metadata

⏩ IDM.TSA.00058 Content Format

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 45

© 2021. This work is licensed under a CC BY 4.0 license.

⏩ IDM.TSA.00059 Content Access

Table 14: Functional Requirements Trusted Caching

4.10. Trusted Information Exchange

4.10.1. Description

To exchange trusted information a few functions are required. This covers the secure import and export of

such trusted information data as well as the content.

4.10.2. Stimulus/Response Sequences

Request from outside or internal trigger.

4.10.3. Functional Requirements

Functional Requirement

⏩ IDM.TSA.00050 Trusted information export

⏩ IDM.TSA.00051 Trusted information import

⏩ IDM.TSA.00052 Content Modifications

⏩ IDM.TSA.00053 Trusted Identity Information

Table 15: Functional Requirements Trusted Information Exchange

5. Other Requirements

Additionally, to the product functions, the product MUST contain the first policies as basis for the behavior

of the system. The following policies have to be implemented within the rego policy language [Rego]. All

inputs and outputs MUST be in JSON format. Necessary policies are mentioned in Appendix B: Policy List and

rely on the functionalities mentioned in this chapter.

⏩ IDM.TSA.00120 JWT Decode Policy

The policy MUST be able to decode and verify a JWT to get the encoded contents for policy

evaluations.

 Input

 A JWT Token.

 Output

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 46

© 2021. This work is licensed under a CC BY 4.0 license.

 The decoded JWT Token and verification result.

Acceptance Criteria

1) Policy is able to decode the received JWT generated according to RFC7519

2) JWT signature MUST be verified

3) Decoded JWT content.

⏪

⏩ IDM.TSA.00121 JWT Encode Policy

The policy MUST be able to encode content to get valid and signed JWT token.

 Input

 Any content.

 Output

 The encoded and signed JWT Token.

Acceptance Criteria

1) Policy is able to encode content to a valid JWT according to RFC7519

2) JWT signature MUST be verifiable against public key

3) Valid JWT

⏪

⏩ IDM.TSA.00122 Base64 Encode/Decode

The policy MUST be able to encode content to BASE64 and decode content to raw string values.

 Input

 Any string content/base64 content

 Output

 The encoded content or the decoded content.

Acceptance Criteria

1) Policy is able to encode content to base64

2) Policy is able to decode base64 content

⏪

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 47

© 2021. This work is licensed under a CC BY 4.0 license.

⏩ IDM.TSA.00123 Hash Policy

The policy MUST be able to hash content with SHA256/keccak-256 or better.

 Input

 Any content.

 Output

 A hash values.

Acceptance Criteria

1) Policy is able to generate SHA256/keccak-256 hashes over the content

2) Hash value must be valid

⏪

⏩ IDM.TSA.00124 JSON Content Compare Policy

This policy MUST evaluate the content of JSON data and verify whether the request is viable or not

by a Boolean comparison of the fields. The comparison MUST demonstrate the standard Boolean

compares like NOT,EQUAL, GREATER THAN, LESS THAN etc. for integer, timestamps, Boolean and

string values.

 Input

Field Type Example

updated_at date 2020-10-09 04:44:47Z

their_label string Bob

invitation JSON

OBJEC

T

{

 "accept": "auto",

 "alias": "Bob, providing quotes",

 "connection_id": "3fa85f64-5717-4562-b3fc-2c963f66afa6",

 "created_at": "2020-11-09 04:44:47Z",

 "error_msg": "No DIDDoc provided; cannot connect to public

DID",

 "inbound_connection_id": "3fa85f64-5717-4562-b3fc-

2c963f66afa6",

 "initiator": "self",

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 48

© 2021. This work is licensed under a CC BY 4.0 license.

 "invitation_key":

"H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV",

 "invitation_mode": "once",

 "my_did": "WgWxqztrNooG92RXvxSTWv",

 "request_id": "3fa85f64-5717-4562-b3fc-2c963f66afa6",

 "routing_state": "active",

 "state": "active",

 "their_did": "WgWxqztrNooG92RXvxSTWv",

 "their_label": "Bob",

 "their_role": "Point of contact",

 "updated_at": "2020-11-09 04:44:47Z"

}

 Output

 A list of compared values for each comparison type.

Acceptance Criteria

1) The policy is able to return if their_label is equal to “Bob”

2) The policy is able to return if updated_at is less than the given value

⏪

⏩ IDM.TSA.00125 JSON Content Policy

The policy MUST return a complex JSON content with the possibility of field value replacements

inside of an JSON structure by a given input.

Input

“comment” = “Hello World”

“version” = “2.0”

 Output

Field Type Example

proof JSON

Object

{

 "proof": {

 "comment": "Hello World",

 "proof_request": {

 "name": "GXEmployeeProof",

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 49

© 2021. This work is licensed under a CC BY 4.0 license.

 "non_revoked": {

 "from": 346364,

 "to": 363636

 },

 "nonce": "1234567890",

 "requested_attributes": {

 "additionalProp1": {

 "name": "Hello World",

 },

 "restrictions": [

 {

 "schema_id": "WgWxqztrNooG92RXvxSTWv:2:employeeschema:1.0",

 "schema_issuer_did": "WgWxqztrNooG92RXvxSTWv",

 "schema_name": "Hello World",

 "schema_version": "2.0",

 }

]

 }

 }

 }

 }}

Acceptance Criteria

1) The JSON document must be filled with the input values

⏪

⏩ IDM.TSA.00126 Conditional statement policy

This policy MUST be able to distinguish between different conditions. Hereby the output will differ

depending on the input into the policy.

 Input

 "income":"15000",

"expense":"17000"

Output

valid_expense = "allow" {

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 50

© 2021. This work is licensed under a CC BY 4.0 license.

 input.income == "15000" # allow

} else = "deny" {

 input.expense == "17000" # disallow

}

Acceptance Criteria

1) “Allow” Output, if income is 15000

2) “Deny” is true Output if income is not equal 15000 and expense is 17000

⏪

⏩ IDM.TSA.00127 X.509 certificate policy

The policy MUST be able to parse certificates to get the content.

Input

cert =

-----BEGIN CERTIFICATE-----

MIIF2zCCBM….

-----END CERTIFICATE-----

Output

Must be an array of X.509 certificates represented as JSON objects.

Acceptance Criteria

1) The policy must be able to decode PEM strings

⏪

⏩ IDM.TSA.00128 External HTTP Request Policy

The policy MUST be able to call external HTTP URLs. The execution MUST be feasible for single and

multiple calls within one policy. The returned content MUST be processable with standard

functionalities of the policy system.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 51

© 2021. This work is licensed under a CC BY 4.0 license.

 Input

 Any content.

 Output

 HTML content from any website.

 HTML content encoded as base64

Acceptance Criteria

1) Policy is able get the content from another website and returns over the policy output.

2) The content from the returned website is encoded as base64

⏪

⏩ IDM.TSA.00129 Regex Policy

The policy MUST be able to interpret regexes.

 Input

 A single string.

 Output

 A Boolean value which indicates if the content contains lowercase signs.

Acceptance Criteria

1) Policy prints the correct result for A_b_C123

2) Policy Prints the correct result for ABC123

⏪

⏩ IDM.TSA.00130 Distributable Cache Policy

This policy demonstrates how the distributable cache interaction works.

 Input

 Key Metadata.

 Output

 The JSON result of the cache.

 Acceptance Criteria

1) The policy returns content to a key metadata

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 52

© 2021. This work is licensed under a CC BY 4.0 license.

⏪

⏩ IDM.TSA.00131 Task Controller Policy

The policy demonstrates how the task controller integration works. If the policy is called, the policy

MUST return a task id. By calling the same policy with the task id, it must return a JSON content or a

response code which indicates that the task is not yet done.

 Input

 Key Metadata.

 Output

 The JSON result of the cache.

 Acceptance Criteria

1) The policy returns a task id from the task controller

2) The task controller triggers the task

3) The policy returns a pending state during the pending task

4) The policy returns a result to the task, if the task is done

⏪

⏩ IDM.TSA.00132 Interaction Policies

The policies are used to support other trust components and processes; therefore, the product MUST

implement the basic policies described in the Appendix B. The functionality of these policies MUST

be aligned with the different component vendors to finalize the input, output values and the exact

behavior.

⏪

6. Verification

⏩ IDM.TSA.00133 Behavior Driven Design

Verification of fulfillment of the requirements and characteristics MUST be done using automated

tests which are part of the deliverables. They SHOULD be done by patterns of the Behavior Driven

Development (BDD) using the “Gherkin Syntax”. ⏪

⏩ IDM.TSA.00134 Automated Test Environment

All functionalities MUST be demonstrated in a complexer test environment within a sandbox, with

the following infrastructure components:

https://creativecommons.org/licenses/by/4.0/
https://specflow.org/bdd/
https://specflow.org/bdd/

Software Requirements Specification for IDM.TSA Page 53

© 2021. This work is licensed under a CC BY 4.0 license.

- Load Balancer, e.g., HAProxy

- API Gateway, e.g., Kong

- Service Mesh, e.g., Linkerd/Istio

- DNS

- Multiple Servers

- Firewalls

All security tests MUST be passed in this test environment automatically. ⏪

⏩ IDM.TSA.00135 Load Tests

Scalability and Performance around the high workload scenarios MUST be demonstrated, by using

any kind of Load Test Framework for HTTP APIs. e.g., Gatling11. ⏪

11 https://gatling.io/

https://creativecommons.org/licenses/by/4.0/
https://gatling.io/

Software Requirements Specification for IDM.TSA Page 54

© 2021. This work is licensed under a CC BY 4.0 license.

Appendix A: Glossary

For the glossary refer to IDM.AO Glossary/Terminology [IDM.AO].

Appendix B: Policy list

Due to the complexity of the GXFS environment, a couple of policies are described below. These will be

mentioned in the other IDM documents as well, especially in the OCM and AA documents.

To get a brief understanding of the necessary functionalities, these policies are mentioned here. They rely

HEAVILY on the mentioned features in 5. Other Requirements.

Policy Description Required by component

PrincipalCredentialRequest The policy MUST be able to

decide whether an employee

is allowed to receive a Gaia-X

principal credential

IDM.OCM Principal Manager Trust

Service Interaction

GetTrustedConnectionState The policy MUST be able to

decide whether a connection

request from another OCM is

accepted and build the

necessary proof request.

IDM.OCM Get Trusted Connection State

Policy

TrustedConnectionCredential

s

This policy MUST decide

whether a connection proof-

request should be responded

to.

IDM.OCM Presentation Request to

establish a Trusted Connection

TrustedConnectionUpdate This policy is being evaluated,

once a connection trust state

between two OCMs has been

updated, e.g., when initiating

a new connection or updating

an existing one. It MUST

validate the verifiable

presentation and check

whether it was valid or not.

IDM.OCM Presentation Received for

Trusted Connection

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 55

© 2021. This work is licensed under a CC BY 4.0 license.

CredentialIssueRequest This policy MUST evaluate

whether a credential should

be issued or not. It will receive

the credential schema id, the

credential definition, and the

necessary data.

IDM.OCM Credential-Issue Request

Received

ProofRequestResponse This policy MUST decide

whether a proof request may

be responded to.

IDM.OCM Presentation Request

Received

PresentationFreshnessState This policy validates if a valid

verifiable presentation needs

to be updated, because the

presentation lifespan is

running out soon. The output

MAY be cached to avoid

unnecessary calls.

IDM.OCM Check Received Presentations

PresentationRevokationState This policy defines if a valid

verifiable presentation needs

to be checked for

revocations. The output MAY

be cached to avoid

unnecessary calls

IDM.OCM Check Received Presentations

for Revocation State

CredentialFreshnessState This policy defines if a valid

verifiable credential needs to

be refreshed, because the

credential lifespan is running

out soon. The output MAY be

cached to avoid unnecessary

calls

IDM.OCM Check Credential State

ProofOfNonRevocation This policy MUST decide

whether an issued verifiable

presentation shall be

automatically renewed as

soon as a request is received

from the recipient

IDM.OCM Proof of non-Revocation

Received

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 56

© 2021. This work is licensed under a CC BY 4.0 license.

Participant Proof Policy which provides a proof

in JSON format for required

GX employee attributes. E.g.,

Name, Email Address and

issuer of the credential

IDM.OCM Principal Manager Trust

Service Interaction

Principal Proof Policy Policy which provides an Indy

proof in JSON format for

required participants GX

membership attributes. E.g.,

ParticipantName, Onboarding

Date etc.

IDM.OCM Principal Manager Trust

Service Interaction

GetTrustedConnectionState Policy which provides an Indy

proof in JSON format for

required credentials and

schemas to decide whether a

new connection will be

accepted. This MAY include a

proof-request for the Gaia-X

participant credential and

Gaia-X organizational

credential.

IDM.OCM Get Trusted Connection State

Policy

PublicProfileCredential This policy MUST fulfill

requests by the OCM to

return if credentials are

public SDs or not.

IDM.OCM Self-Description Content

GetLoginProofInvitation This policy MUST respond to

the AA request containing

the scope and namespace for

the authorization request. It

returns the according

presentationID and link from

the OCM.

IDM.AA QR Code Generation

IDM.AA.00001 Session handling and

scope elevation

GetLoginProofResult This policy MUST provide a

result to the AA request

initiated with

GetLoginProofInvitation

provided presentationID.

IDM.AA.00002 Login State Background

Polling

IDM.AA.00002 Session handling and

scope elevation

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 57

© 2021. This work is licensed under a CC BY 4.0 license.

The result shall be a flattened

list of claims related to the

requested scopes of identity

content (see IDM.TSA.00061

Trusted Identity Information)

GetIatProofInvitation This policy MUST evaluate

whether a client is allowed to

obtain an Initial Access

Token. It will request an

appropriate invitation from

the corresponding OCM.

IDM.AA Policy based authorization

GetIatProofResult This policy endpoint MUST

return the IAT Proof

Invitation result to the AA

based on the according

policy.

IDM.AA Policy based authorization

Appendix C: Overview GXFS Work Packages

The project “Gaia-X Federation Services” (GXFS) is an initiative funded by the German Federal Ministry of
Economic Affairs and Energy (BMWi) to develop the first set of Gaia-X Federation Services, which form the
technical basis for the operational implementation of Gaia-X.

The project is structured in five Working Groups, focusing on different functional areas as follows:

Work Package 1 (WP1): Identity & Trust
Identity &Trust covers authentication and authorization, credential management, decentral Identity
management as well as the verification of analogue credentials.

Work Package 2 (WP2): Federated Catalogue
The Federated Catalogue constitutes the central repository for Gaia-X Self-Descriptions to enable the
discovery and selection of Providers and their Service Offerings. The Self-Description as expression of
properties and Claims of Participants and Assets represents a key element for transparency and trust in
Gaia-X.

Work Package 3 (WP3): Sovereign Data Exchange
Data Sovereignty Services enable the sovereign data exchange of Participants by providing a Data
Agreement Service and a Data Logging Service to enable the enforcement of Policies. Further, usage
constraints for data exchange can be expressed by Provider Policies as part of the Self-Description

Work Package 4 (WP4): Compliance

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for IDM.TSA Page 58

© 2021. This work is licensed under a CC BY 4.0 license.

Compliance includes mechanisms to ensure a Participant’s adherence to the Policy Rules in areas such as
security, privacy transparency and interoperability during onboarding and service delivery.

Work Package 5 (WP5): Portal & Integration
Gaia-X Portals and API will support onboarding and Accreditation of Participants, demonstrate service
discovery, orchestration and provisioning of sample services.

All together the deliverables of the first GXFS project phase are specifications for 17 lots, that are being
awarded in EU-wide tenders:

Further general information on the Federation Services can be found in [TAD].

https://creativecommons.org/licenses/by/4.0/

