

Software Requirements

Specification

for

Gaia-X Federation Services

Federated Catalogue

Core Catalogue Features

FC.CCF

Software Requirements Specification for FC.CCF Page ii

© 2021. This work is licensed under a CC BY 4.0 license

Published by

eco – Association of the Internet Industry (eco – Verband der Internetwirtschaft e.V.)

Lichtstrasse 43h

50825 Cologne

Germany

Copyright

© 2021 Gaia-X European Association for Data and Cloud AISBL

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of

this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box

1866, Mountain View, CA 94042, USA

https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page iii

© 2021. This work is licensed under a CC BY 4.0 license

Table of Contents

Table of Contents iii

List of Figures vi

List of Tables vi

1. Introduction 1

1.1 Document Purpose 1

1.2 Product Scope 1

1.3 Definitions, Acronyms and Abbreviations 1

1.4 References 2

2. Product Overview 4

2.1 Product Perspective 4

2.2 Product Functions 5

2.2.1 User-Facing Functions 5

2.2.2 Catalogue Management 7

2.2.3 High-Level Architecture 7

2.3 Product Constraints 8

2.4 User Classes and Characteristics 10

2.5 Operating Environment 15

2.6 User Documentation 15

2.7 Technical Guidance 16

3. Requirements 16

3.1 External Interfaces 16

3.1.1 User Interfaces 16

3.1.2 Hardware Interfaces 16

3.1.3 Software Interfaces 16

3.1.4 Communications Interfaces 17

3.2 Functional Requirements 17

3.2.1 Logging 17

3.2.2 Backups 17

3.2.3 Scaling 17

3.2.4 Self-Description 17

3.2.5 Performance Requirements 20

3.2.5.1 Response Time 20

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page iv

© 2021. This work is licensed under a CC BY 4.0 license

3.2.5.2 Workload 20

3.2.5.3 Accuracy 20

3.2.6 Safety Requirements 20

3.2.7 Security Requirements 20

3.2.7.1 Identity, Authentication, and Access Control Management 21

3.2.7.2 Cryptography and Key Management 21

3.2.7.3 Communication Security 22

3.2.8 Data Standards 22

4. System Features 23

4.1 Self-Description Storage Subsystem 23

4.1.1 Description 23

4.1.2 Functions 27

4.1.2.1 Adding a new Self-Description 27

4.1.2.2 Syntactic Validation 27

4.1.2.3 Changing the Life Cycle State of Self-Descriptions 28

4.1.2.4 Retrieving Self-Descriptions 28

4.1.3 Provided Internal Interfaces 28

4.1.4 Consumed Internal Interfaces 29

4.1.5 Functional Requirements 29

4.1.6 Non-Functional Requirements 29

4.2 Schema Storage Subsystem 30

4.2.1 Description 30

4.2.2 Functions 32

4.2.3 Provided Internal Interfaces 33

4.2.4 Consumed Internal Interfaces 33

4.2.5 Functional Requirements 33

4.2.6 Non-Functional Requirements 34

4.3 Semantics and Trust Verification Subsystem 35

4.3.1 Description 35

4.3.2 Functions 36

4.3.2.1 Validating a Self-Description against the Schema 36

4.3.2.2 Trust Verification 37

4.3.3 Provided Internal Interfaces 37

4.3.4 Consumed Internal Interfaces 37

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page v

© 2021. This work is licensed under a CC BY 4.0 license

4.3.5 Functional Requirements 37

4.4 Self-Description Graph and Query Subsystem 37

4.4.1 Description 37

4.4.2 Functions 38

4.4.2.1 Functions of the Self-Description Graph 38

4.4.2.2 Functions of the Query Module 39

4.4.3 Provided Internal Interfaces 39

4.4.4 Consumed Internal Interfaces 39

4.4.5 Functional Requirements 40

4.4.5.1 Self-Description Graph 40

4.4.5.2 Query Module 40

4.4.5.3 Query Parameters 41

4.4.6 Non-Functional Requirements 42

4.4.6.1 Self-Description Graph 42

4.4.6.2 Query Module 43

4.5 Catalogue REST API Subsystem 43

4.5.1 Description 43

4.5.2 Functions 44

4.5.2.1 Participants 44

4.5.2.2 Principals / Users 45

4.5.2.3 Self-Description 46

4.5.2.4 Query 48

4.5.2.5 Schema Management 48

4.5.2.6 Roles 49

4.5.3 Provided Internal Interfaces 49

4.5.4 Consumed Internal Interfaces 49

4.5.5 Functional Requirements 50

4.5.6 Non-Functional Requirements 51

Appendix A: Self-Description Core Ontology 52

Appendix B: REST API 61

Appendix C: Database Structure for Self-Description Metadata 89

Appendix D: Gaia-X Architecture Decision Records 90

Appendix E: Overview GXFS Work Packages 95

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page vi

© 2021. This work is licensed under a CC BY 4.0 license

List of Figures

Figure 1: High-Level Architecture of the Gaia-X Catalogue. 7

Figure 2: Self-Description Lifecycle 9

Figure 3:User and Role Structure 11

Figure 4: Workflow of retrieving a list of Administrative Metadata of SDs based on filters 24

Figure 5: Workflow of retrieving raw JSON-LDs and Administrative Metadata 24

Figure 6:Workflow of adding a new SD to Catalogue 26

Figure 7:Workflow of changing the life cycle state of SDs 27

Figure 8: Schematic inheritance relations and properties for the top-level Self-Description 32

Figure 9: Workflow of details of Cryptographic signature validation 36

Figure 10: Workflow of retrieving results of queries 38

List of Tables

Table 1: Terms 2

Table 2: Abbreviations 2

Table 3: Role Activity Matrix 6

Table 4:Provided Roles by the Catalogue 15

Table 5:Security Requirements Identity, Authentication, and Access Control Management 21

Table 6: Security Requirements Cryptography and Key Management 22

Table 7:Security Requirements Communication Security 22

Table 9:Data Standards 23

Table 10: Self-Description Keys, Datatypes and Descriptions 24

Table 11: Self-Description Storage Subsystem Functions - Adding a new Self Descriptions 27

Table 12: Self-Description Storage Subsystem Functions - Syntactic Validation. 28

Table 13: Self-Description Storage Subsystem Functions - Changing the Life Cycle State of Self-Descriptions

 28

Table 14: Self-Description Storage Subsystem Functions - Retrieving Self-Descriptions 28

Table 15: Self-Description Storage Subsystem Functional Requirements 29

Table 16: Self-Description Storage Subsystem Non-Functional Requirements 30

Table 17: Schema Storage Subsystem Functions 33

Table 18: Schema Storage Subsystem Functional Requirements 34

https://creativecommons.org/licenses/by/4.0/
https://decix-my.sharepoint.com/personal/onedrive-eco-gxfs_for-the-inter_net/Documents/GAIA-X/GXFS/Ausschreibung%20Spec%201/dtvp_Vergabeunterlagen/WP2/FC.CCF/SRS_GXFS_FC_CCF.docx#_Toc75944621

Software Requirements Specification for FC.CCF Page vii

© 2021. This work is licensed under a CC BY 4.0 license

Table 19: Schema Storage Subsystem Non-Functional Requirements 34

Table 20: Validating a Self-Description against the Schema 37

Table 21: Semantics and Trust Verification Subsystem Trust Verification 37

Table 22: Semantics and Trust Verification Subsystem Functional Requirements 37

Table 23: Functions of the Self-Description Graph 39

Table 24:Functions of the Query Module 39

Table 25: Self-Description Graph Functional Requirements 40

Table 26: Functional Requirements Query Module 41

Table 27: Functional Requirements Query Parameters 42

Table 28: Self-Description Graph Non-Functional Requirements 43

Table 29: Non-Functional Requirements Query Module 43

Table 30: Catalogue REST API Subsystem Functions Participants 45

Table 31: Catalogue REST API Subsystem Functions Principals/ Users 45

Table 32: Catalogue REST API Subsystem Functions Checking the Trust-Level/Signature of the Self-

Description/Authorization 48

Table 33: Catalogue REST API Subsystem Functions Query 48

Table 34: Catalogue REST API Subsystem Functions Schema Management 49

Table 35: Catalogue REST API Subsystem Functions Roles 49

Table 36: Catalogue REST API Subsystem Functional Requirements 51

Table 37: Catalogue REST API Subsystem Non-Functional Requirements 52

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 1

© 2021. This work is licensed under a CC BY 4.0 license

1. Introduction

1.1 Document Purpose

This document describes the requirements, external interfaces, and subsequent major design decisions for

the Gaia-X Federation Service “Federated Catalogue”. This document contains the specification for a single

instance of a Catalogue in an overall Federated Catalogue system.

To get general information regarding Gaia-X and the Gaia-X Federation Services please refer to [1] and [11].

1.2 Product Scope

The product scope is on the development of the Gaia-X Catalogue core features. The Gaia-X Catalogue makes

Self-Descriptions of Providers and their offerings available to end-users and allows advanced queries for

them.

Gaia-X Self-Descriptions express characteristics of Assets, Resources, Service Offerings and Participants. Self-

Descriptions are tied to the identifier of the respective Asset, Resource or Participant. Providers are

responsible for the creation of their Assets or Resources Self-Description. In addition to self-declared Claims

made by Participants about themselves or about the Service Offering provided by them, a Self-Description

may comprise Credentials issued and signed by trusted parties. Such Credentials include Claims about the

Provider or Asset/Resource, which have been asserted by the issuer.

Self-Descriptions intended for public usage can be published into a Catalogue where they can be found by

potential Consumers. The Providers decide in a self-sovereign manner which information they want to make

public in a Catalogue and which information they only want to share privately. The goal of the (system of

Federated) Catalogues is to enable Consumers to find best-matching offerings and to monitor for relevant

changes of the offerings.

1.3 Definitions, Acronyms and Abbreviations

A more general Glossary about terms used within the Gaia-X context can be found in [1].

Term Definition

Self-Description File in the JSON-LD format use to describe a

Participant, Asset or Resource in Gaia-X

Self-Description Graph A graph database stores Self-Descriptions which

cross-reference between each other

Object Resources and Assets with a Self-Description

managed by the catalogue

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 2

© 2021. This work is licensed under a CC BY 4.0 license

Gaia-X Federator Federators are in charge of the Federation Services

and the Federation which are autonomous of each

other. Federators are Gaia-X Participants. There can

be one or more Federators per type of Federation

Service

Table 1: Terms

Abbreviation Definition

AISBL Association international sans but lucratif – the legal

form of the non-profit organization of the Gaia-X

Foundation

JSON-LD JavaScript Object Notation – Linked Data

OWL Web Ontology Language

RDF Resource Description Framework

SD Self-Description

SHACL Shapes Constraint Language

SSI Self-Sovereign Identity

VC Verifiable Credential

Table 2: Abbreviations

1.4 References

[1] Gaia-X European Association for Data and Cloud, AISBL (2021): Gaia-X Architecture Document

Please refer to annex “Gaia-X_Architecture_Document_2103”

[2] JSON-LD 1.1. A JSON-based Serialization for Linked Data. W3C Recommendation 16 July 2020.

https://www.w3.org/TR/2020/REC-json-ld11-20200716/

[3] Shapes Constraint Language (SHACL). W3C Recommendation 20 July 2017.

https://www.w3.org/TR/2017/REC-shacl-20170720/

[4] openCypher: Query Language for Property Graphs. http://www.opencypher.org/

[5] Verifiable Credentials Data Model 1.0. Expressing verifiable information on the Web. W3C

Recommendation 19 November 2019. https://www.w3.org/TR/2019/REC-vc-data-model-20191119/

[6] Specification of non-functional Requirements Security and Privacy by Design for Gaia-X Federation

Services.

Please refer to annex “GXFS Nonfunctional_Requirements_SPBD”

https://creativecommons.org/licenses/by/4.0/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://www.w3.org/TR/2017/REC-shacl-20170720/
http://www.opencypher.org/
https://www.w3.org/TR/2019/REC-vc-data-model-20191119/

Software Requirements Specification for FC.CCF Page 3

© 2021. This work is licensed under a CC BY 4.0 license

[7] Data Catalog Vocabulary (DCAT) - Version 2. W3C Recommendation 04 February 2020.

https://www.w3.org/TR/2020/REC-vocab-dcat-2-20200204/

[8] OpenID Connect Core 1.0, OpenID Foundation, 2014.

https://openid.net/specs/openid-connect-core-1_0.html

[9] OWL 2 Web Ontology Language. Structural Specification and Functional-Style Syntax (Second Edition).

W3C Recommendation 11 December 2012. http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/

[10] SKOS Simple Knowledge Organization System. W3C Recommendation 18 August 2009.

http://www.w3.org/TR/2009/REC-skos-reference-20090818/

[11] Gaia-X European Association for Data and Cloud, AISBL (2021): Gaia-X Policy Rules Document
Please refer to annex “Gaia-X_Policy Rules_Document_2104”

[12] ADR Overview: Please refer to appendix D

[13] Gaia-X Federation Services Technical Development Requirements
Please refer to annex “GXFS_Technical_Development_Requirements”

[14] Gaia-X WP1 (2021), Architecture Overview
Please refer to annex “GX_IDM_AO”

https://creativecommons.org/licenses/by/4.0/
https://www.w3.org/TR/2020/REC-vocab-dcat-2-20200204/
https://openid.net/specs/openid-connect-core-1_0.html
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/

Software Requirements Specification for FC.CCF Page 4

© 2021. This work is licensed under a CC BY 4.0 license

2. Product Overview

2.1 Product Perspective

A Catalogue contains two types of storage: The Self-Description Storage for the published Self-Description

files and the Self-Description Graph. By following references between Self-Descriptions in the graph,

advanced queries across individual Self-Descriptions become possible.

Since Self-Descriptions are protected by cryptographic signatures, they are immutable and cannot be

changed once published. The life cycle state of a Self-Description is described in additional metadata. There

are four possible states for the Self-Description life cycle: “active” (the default), “revoked”, “deprecate” and

“end-of-life”. The Catalogues provide access to the raw Self-Descriptions that are currently loaded including

the life cycle metadata. This allows Consumers to verify the Self-Descriptions and the cryptographic proofs

contained in them in a self-sovereign manner.

The Self-Description Graph contains the information imported from the Self-Descriptions that are known to

the Catalogue and in an “active” life cycle state. The Self-Description Graph allows for complex queries across

Self-Descriptions.

To present search results objectively and without discrimination, compliant Catalogues use a graph query

language with no internal ranking of results: Besides the user-defined query statements with explicit filter

and sort criteria, results are ordered randomly. The random seed for the search results can be set on a per-

session basis so that the query results are repeatable within a session with the Catalogue.

In a privately hosted Catalogue, the authentication information can be used to allow a user to upload new

Self-Descriptions and/or change the life cycle state of existing Self-Descriptions. In a public Catalogue, the

cryptographic signatures of the Self-Descriptions are checked to make sure that the issuer of the Self-

Description is the owner of the subject of the Self-Description. If that is the case, the Self-Description is

accepted by the Catalogue. Hence, Self-Descriptions can be communicated to the Catalogue by third parties,

as the trust verification is independent from the distribution mechanism. Self-Descriptions can be marked by

the issuer as “non-public” to prevent that they are copied to a public Catalogue by a third-party that received

the Self-Description file over a private channel.

A Visitor is an anonymous user accessing a Catalogue without a known account for the session. Every non-

Visitor user interacts with the Catalogue REST API in the context of a session. Another option to interact with

the Catalogue is to use a GUI frontend (e.g., a Gaia-X Portal or a custom GUI implementation) that uses the

Catalogue REST API in the background. The interaction between the Catalogue and a GUI frontend is based

on an authenticated session for the individual user of the GUI frontend.

A Provider can send Self-Descriptions about its offers to a Federated Catalogue, either via the remote API,

which addresses machine clients, or using the portal, which addresses human end users. The Federated

Catalogue stores and indexes the Self-Descriptions into a Self-Description Graph and makes it available to

other Gaia-X Participants and Visitors to query for them.

The files containing the Self-Descriptions are stored in the Catalogue together with additional metadata.

From these files, the SDs can be imported at any time into the Self-Description Graph, for instance, to

recreate the graph and synchronize its content with other Catalogue instances. Consequently, only the set of

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 5

© 2021. This work is licensed under a CC BY 4.0 license

combined Self-Description files is the ground truth for all other operations. Additional metadata, for instance,

providing the life cycle state of the SD file, is further required.

2.2 Product Functions

2.2.1 User-Facing Functions

The main interaction with the Catalogue for an end-user is via the provided REST API. See Section 4.5 and

Appendix B for more details on the API specification.

Note that the permissions below are intended for a standalone deployment of the Catalogue, such as in the

context of a private company. In combination with a Self-Sovereign Identity system, the management of the

access rights is done by the Gaia-X Participants in a self-sovereign manner. Furthermore, changing the life

cycle of the Self-Descriptions depends on update messages with the signature of the issuer of the Self-

Description.

In Table 3 below, a matrix of roles and their permissions on activities are shown. Each role and activity has

an unique identifier. For activities starting with “Act” and for roles starting with “Ro”.

The cells are filled with a “Yes”, “No” or “Own”. A “Yes” means that a user with this role has the permission

to perform the activity on the entire scope of the Catalogue. For instance, the role “Catalogue Administrator”

can read all participants in the Catalogue. A “Own” means that a user with this role can perform the activity

only on the scope of the associated participant. A “No” indicates that there is no permission to perform the

activity at all. A “*” on an activity description means that it is an internal activity with no associated API call.

The “Visitor” user is not mentioned in the table. This is the anonymous user that can perform only the

activities that are always enabled (“Yes” for every user mentioned in the table).

 Internal Roles External Roles

 Ro-MU-CA Ro-MU-A Ro-SD-A Ro-Pa-A

 Catalogue

Administrator

Participant

Administrator

Self-Description

Administrator

Participant User

Administrator

Participant

Act-Pa-00 Add Participant Yes No No No

Act-Pa-01 Read Participant Yes Own Own Own

Act-Pa-02 Update Participant Yes Own No No

Act-Pa-03 Delete Participant Yes Own No No

Act-Pa-04 Get users of participant Yes Own No Own

User (For standalone deployment of a Catalogue without an existing IAM system)

Act-Us-00 Create User Yes Own No Own

Act-Us-01 Read User Yes Own No Own

Act-Us-02 Update User Yes Own No Own

Act-Us-03 Delete User Yes Own No Own

Self-Description

Act-SD-00 Add Self-Description Yes Own Own No

Act-SD-01 Get Self-Description Yes Yes Yes Yes

Act-SD-02 Update Self-Description Yes Own Own No

Act-SD-03 Revoke Self-Description Yes Own Own No

Act-SD-04 Verify SD trust Yes Yes Yes Yes

Act-SD-05 Verify SD syntax Yes Yes Yes Yes

Act-SD-06 *Inter Catalogue Synchronization Import Yes No No No

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 6

© 2021. This work is licensed under a CC BY 4.0 license

Act-SD-07 *Inter Catalogue Synchronization Export Yes No No No

Query

Act-Qu-04 Execute a Query Yes Yes Yes Yes

Schema

Act-Sc-00 *Add schema to schema storage Yes No No No

Act-Sc-01 Get the latest schema Yes Yes Yes Yes

Act-Sc-02 *Update schema Yes No No No

Act-Sc-03 *Delete schema Yes No No No

Act-Sc-04 *Verify schema Yes No No No

Act-Sc-05 *Import schemas Yes No No No

Act-Sc-06 *Export latest schemas Yes No No No

Role (For standalone deployment of a Catalogue without an existing IAM system)

Act-Ro-00 Assign / Revoke public roles Yes Own No Own

Act-Ro-01 Assign / Revoke internal roles Yes No No No

Act-Ro-02 Get roles of a user Yes Own No Own

Act-Ro-03 Get list of all possible roles Yes Yes Yes Yes

Table 3: Role Activity Matrix

Participant

The participant is described by a Self-Description and is the owner of all its Objects in the Catalogue. After a

successful registration the participant gets an initial user account with all permissions on its own scope. The

participant has several users underneath. For further information about the user and role structure, please

have a look at Section 2.4.

User

A user belongs to one participant and can own roles. For standalone deployment of a Catalogue without an

existing IAM system, users of a Catalogue instance are managed by the Catalogue itself. For further

information about the user and role structure, please have a look at Section 2.4.

Self-Description

Every item in the Catalogue is described by a Self-Description. The Self-Description Administrator role does

not include the permissions on the Self-Descriptions of Participants and Users, because their own roles are

specified for them. Reading Self-Descriptions is allowed for each registered user and as well for non-

registered users (Visitors). Section 4.1 specifies how Self-Descriptions are stored in the Catalogue.

Verification of Self-Descriptions is divided in two parts and is allowed for each registered user and as well for

non-registered users:

a) Trust – Checking the signatures of the Self-Description

b) Syntax – Checking the syntactical correctness of the Self-Description against a Schema

For further information about the verification process, please have a look at Section 4.3.

Import and Export of Self-Descriptions aims at the Inter-Catalogue Synchronization (a different lot in the GXFS

tender) and is an internal activity without an associated API call.

Query

In the first version of the Catalogue every registered user as well non-registered user are allowed to execute

self-defined queries on the Self-Description Graph of the Catalogue. In future versions of the Catalogue, the

options to manage self-defined queries can be expanded.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 7

© 2021. This work is licensed under a CC BY 4.0 license

For further information about the structure and format of the queries, please have a look at Section 4.4.

Schema

Schemas define the structure of the Self-Descriptions. Each registered user and as well non-registered users

can access the recent versions of all schemas. In the first version of the Catalogue, all other activities for the

schema management are internal and not publicly available.

For further information about the schema management, please have a look at Section 4.2.

Role

For standalone deployment of a Catalogue, roles are managed by the Catalogue itself. For further information

about the role structure and the provided roles, please have a look at Section 2.4.

2.2.2 Catalogue Management

The operator of the Catalogue needs to have dedicated administrative access: first to perform activities for

which no dedicated API is implemented, secondly to monitor the status and resource consumption of the

Catalogue.

2.2.3 High-Level Architecture

The following Figure 1 shows the high-level architecture with functional modules of the Catalogue. The next

section introduces each module briefly. The detailed specification follows in Section 4 with the section

numbers indicated in the high-level architecture.

Figure 1: High-Level Architecture of the Gaia-X Catalogue.

Modules in blue provide internal functionality. Red modules indicate an external interface for the Catalogue. Green modules denote

(potential) users of the external interfaces

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 8

© 2021. This work is licensed under a CC BY 4.0 license

Self-Description Storage

The Self-Description Storage subsystem holds the raw Self-Descriptions in JSON-LD format, as well as

metadata information for the life cycle. The metadata cannot be stored in the raw JSON-LD format itself,

because the JSON-LD part is protected by a cryptographic signature and cannot be changed. The Self-

Description Storage subsystem is specified in Section 4.1.

Schema Management

Every Self-Description has to adhere to a schema definition. This ensures that information is structured in a

uniform manner and queries can be formulated by the end-users. The Schema Management subsystem

stores current and past versions of the schemas that are relevant to the Catalogue. The Schema-Management

subsystem is specified in Section 4.2.

Self-Description Verification

When a Self-Description is uploaded to the Catalogue, it is verified for syntactic and trust conformance before

being added to the Self-Description Storage. The Self-Description Verification subsystem is specified in

Section 4.3.

Self-Description Graph

Self-Descriptions may cross-reference each other. The Catalogue queries shall allow following these

references. For efficient processing of the queries, the Self-Descriptions with an “active” life cycle state are

loaded into a graph database. The Self-Description Graph subsystem is specified in Section 4.4.

User and Session Management

The Catalogue software can be operated in conjunction with a Self-Sovereign Identity (SSI) system or

standalone, for example with additional private Self-Description information in the context of a federation.

In such a setting, the Catalogue has to manage its own participants.

Catalogue REST API

The REST API is the main external interface for users to interact with the Catalogue. The Catalogue REST API

subsystem is specified in Section 4.5.

2.3 Product Constraints

This section summarizes the major constraints for the Catalogue. Many of them stem from definitions in

Gaia-X ADRs (Architecture Decision Records). Please refer to the GXFS relevant ADRs in [12].

Self-Description Format

SDs are transferred using the JSON-LD format with signatures according to the Verifiable Credentials Data

Model to prove their source and that they have not been intercepted during the communication or in the SD

storage. All entities, both nodes and relations (i.e., edge labels), must have a URI as their unambiguous

identifiers.

While this convention is closely aligned with the principles of Linked Data, entities of an SD Graph are not

necessarily dereferenceable. In particular, a requesting client must not expect that it can find additional

information at the Web resource identified by a URI used in the graph. Still, it is regarded as a good practice

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 9

© 2021. This work is licensed under a CC BY 4.0 license

to supply such information and each data provider is encouraged to do so and comply with the Linked Data

principles1.

Self-Description Life cycle

As defined in ADR-003 [12], a Self-Description is in either of the following four states:

1. Active (the default state)

2. End-of-Life (after a timeout date, e.g., the expiry of a cryptographic signature)

3. Deprecated (by a newer Self-Description)

4. Revoked (by the original issuer or a trusted party, e.g., because it contained wrong or fraudulent

information)

The default state is “active”. The other states are terminal, i.e., no further state transitions follow upon them.

Note that the state of the Self-Description is independent from the state of the underlying entity. For

example, a Service Offering can be deprecated (e.g., replaced by a newer version), whereas the Self-

Description for the Service Offering (in that version) is still active.

Figure 2: Self-Description Lifecycle

Self-Descriptions are Self-Issued

The providers issue the Self-Descriptions in the form of Verifiable Presentations according to the Verifiable

Credentials Data Model. The providers self-sign them with their publicly available cryptographic key

(contained in the public Self-Description of the respective Provider) to avoid “fakes”.

Frequent Renewal of Self-Descriptions

Similar to TLS encryption certificates that require frequent renewal, the Catalogue is “self-cleaning” by giving

a limited timeout to all Self-Descriptions. No exact timeout has been defined so far. A consensus seems

possible for a timeout of 90 days.

Query and Filter Functions

A Catalogue may provide support for several query languages, for instance openCypher, SPARQL or its

1 https://www.w3.org/DesignIssues/LinkedData – not an official W3C Recommendation, but widely adopted

https://creativecommons.org/licenses/by/4.0/
https://www.w3.org/DesignIssues/LinkedData

Software Requirements Specification for FC.CCF Page 10

© 2021. This work is licensed under a CC BY 4.0 license

extension to property graphs SPARQL-star2. However, only openCypher must be supported by each

Catalogue.

A Catalogue is not obliged to answer all incoming queries. Depending on actual or expected runtime but also

if recognizing unsafe clauses as well as incoming requests with invalid or outdated authentication or

authorization claims, then the Catalogue can reject the processing.

Federation of Catalogues

Services provided in the Gaia-X system should not be managed by a single party in the system, to avoid the

possibility of a discriminating behavior of the Catalogue provider.

The onboarding to the Catalogue shall be possible in a non-discriminating way for all participants of Gaia-X.

The participants must have the opportunity to describe, publish, maintain, and manage their description and

different versions of their description in a self-sovereign way, so the issuer of the self-descriptions must be

the providing participant itself. To ensure an easy onboarding of a provider the data and information schemas

shall follow open standards.

Every federation shall be able to run his own Catalogue in his infrastructure to also be able to have private

Catalogue entries for participant-internal services, which are not visible/exposed to external parties.

The Catalogue shall hold copies of the Self-Description files of the Providers of Assets, while the Catalogues

shall also be able to handle updates of the Self-Description in a local cache. The local Self-Description Storage

of a catalogue shall check the temporal validity of certified descriptions of the Assets or their Providers.

A mechanism for Catalogue Object Verification is currently considered based on DLT technologies. Not in

scope for Release 1.

2.4 User Classes and Characteristics

In Gaia-X, each participant can manage their data themselves to guarantee data sovereignty. Thus, the

participants need to interact with the Catalogue to manage their self-descriptions. Depending on the type of

the participant, he has to do different tasks within Gaia-X and the Catalogue. The fulfillment of the tasks

requires access rights to carry out actions within Gaia-X and the Catalogue. To assign different access rights

to participants, a classification of the participants is required.

This chapter defines in a first step the structure of the user and role of participants interacting with the

Catalogue in general to encourage a clear structural understanding of user classes and their characteristics.

In a second step concrete roles are defined.

There are four key objects to describe the user management in the Catalogue:

1. Participants

2. User

3. Role

4. Activity

2 https://w3c.github.io/rdf-star/

https://creativecommons.org/licenses/by/4.0/
https://w3c.github.io/rdf-star/

Software Requirements Specification for FC.CCF Page 11

© 2021. This work is licensed under a CC BY 4.0 license

A participant can include users which are part of its organization. A user is assigned to roles, which give him

the rights to perform actions in the Catalogue via the REST API (see Section 4.5). Thus, a role groups

permission to perform some activities.

Participant

From the Gaia-X Architecture [1], a Participant is an entity, as defined in ISO/IEC 24760-1 as an “item relevant

for the purpose of operation of a domain [...] that has recognizably distinct existence”, which is onboarded

and has a Gaia-X Self-Description.

A participant can be a provider of services and data or a consumer, which uses the provided services/data.

Of course, a participant could have both roles at the same time. Each participant has to be registered in Gaia-

X and is issued a certificate which is needed for identification within Gaia-X. The certification information for

participants is managed by the IAM services by WP13 and issued in the form of Verifiable Credentials.

A special participant is the Gaia-X Federator for administration of infrastructure, internal services, and

processes. For instance, a Trusted Signing Party will be announced and certified by a Gaia-X Federator. In

private hosted Catalogues, the owner of the Catalogue is the Gaia-X Federator and has its permissions to the

Catalogue instance.

A participant is assigned a unique identifier during his verification within the Gaia-X ecosystem. This

unambiguous identifier is also used within the Catalogue.

User

A participant can have multiple users who can use the Catalogue API. Only users can login to the Catalogue

and use the API. A participant signs the Verifiable Credentials of his users so that each user can identify

himself to the Catalogue as a member of the participant. If a legal person wants to act on behalf of several

participants, he needs a separate user for each participant. So, a user from the perspective of the Catalogue

belongs to one single participant.

Possible kinds of a user:

- Principal – from the Gaia-X Architecture: “A Principal is either a natural person or a digital instance

who acts on behalf of a Gaia-X Participant”

- Internal Users – e.g., technical users like a Catalogue administrator. Users for maintenance and

administrative tasks with expanded permissions within the Catalogue.

- Visitor – from the Gaia-X Architecture: “Anonymous, non-registered entity (natural person, bot, ...)

browsing a Gaia-X Catalogue”

To enable access right management for user actions with the Catalogue API, there is a need to define roles,

which a user can be assigned to. A user has specific roles that authorize him to execute certain API calls.

3 Please refer to appendix E for an overview and explanation of the Work Packages (WP).

Participant User Role Activity
has n has n groups n

Figure 3:User and Role Structure

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 12

© 2021. This work is licensed under a CC BY 4.0 license

A user has an identifier, which is unique in the Catalogue instance and in the scope of the associated

participant. The identifier could be, for instance, a composition of the username and the associated

participant identifier.

Role

A role is defined by a group of activities, in particular the permissions to perform these contained activities.

The Catalogue provides several roles, which can be assigned to a user (see table 4).

To provide meaningful roles, the following objects of the activities in Section 4.5 are considered:

- Participant

- User

- Self-Description (for, e.g., provided Assets)

- Query

- Schema Management

- Role

These objects are managed in the Catalogue. The users have to do Create, Read, Update and Delete (CRUD)

operations with most of the objects.

The Catalogue checks the permissions of the user when he creates a session. The permissions of the user are

valid during the whole session. After a configurable timeout, the user has to create a new session (e.g., after

2 days). The timeout can be configured within the Catalogue.

Possible roles will be provided by the Catalogue and can be used by the participants to assign to their users.

Therefore, the Catalogue stores the roles in a database and provides them via the REST API (see Section 4.5.

In the first version of the Catalogue a Role Based Access Management is provided to keep it as simple as

possible.

The Catalogue uses OpenID Connect on top of OAuth2 for authentication of a user. For details, please have

a look in the specification document “IDM & Trust – Architecture Overview” by WP1 [14].

Note that the role-based access management below is intended for a standalone deployment of the

Catalogue. Such as in the context of a private company. In a Gaia-X hosted Catalogue the access management

in combination with a Self-Sovereign Identity system is performed by the Gaia-X Participants in a self-

sovereign manner.

Role Assignment

A role is stored as a Verifiable Credentials (VC) of a user. The VC is signed by the participant to confirm the

validity of the content. If an additional role is assigned to a user, the participant is to create and sign a new

VC of the user with the newly added role.

Roles determine the authorization of actions on objects. A participant needs the opportunity to assign roles

to its users. Therefore, there is a need for roles with appropriate permissions. There are two types of roles in

general:

1. External roles – publicly available roles. Every participant can assign these roles to its users.

2. Internal roles – special roles with huge sets of permissions. Only special participants can assign these

roles to users. Used for internal activities like maintenance and administration of the Catalogue.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 13

© 2021. This work is licensed under a CC BY 4.0 license

Hence, it is necessary to distinguish between the role assignment for these two types of roles. External roles

can be assigned by any user of a participant with the appropriate roles for role assignment. Otherwise,

internal roles can only be assigned by users of a Gaia-X Federator with the appropriate roles.

Initial Assignment and Registration of a Participant in the Catalogue

The initial onboarding of a Participant is defined in a separate lot of the GXFS tender “Onboarding &

Accreditation Workflows”.

After a successful registration of a participant in the Catalogue instance, a master user is automatically

created and assigned to the participant. With this master user the participant has permission rights to all

actions to its own Objects (e.g., all Self-Descriptions of the participant). One of the first actions of the master

user could be to create users in his organization with appropriate roles.

Registration process:

1. A Participant registers in the Catalogue through the API, e.g., via a platform like the Portal specified

in Work Package 54.

2. The Catalogue verifies the provided signatures of the participant with an external Authority like the

AISBL.

3. The Catalogue requests the Self-Description of the Participant verified by the Onboarding &

Accreditation Workflow of Work Package 45.

4. The Catalogue confirms the registration by adding the Self-Description of the participant to its

database and creating of an initial user account for the participant with the two main intentions:

a. The initial user has all permissions in the context/scope of his organization. So, the user can

perform all external activities on Objects of the associated participant in the Catalogue.

b. The initial user can add more users and assign roles to them in the context of his organization.

Permission check

The role information of a user is stored in the Verifiable Credentials (VC) and confirmed by the participant via

a signed certificate. The Catalogue gets the VC out of the OAuth2/OpenID connect token by sending the token

to an external service (called SSI Extension Shell) provided by WP1. For details, please have a look in the

specification document “IDM & Trust – Architecture Overview” by WP1 [14].

The Catalogue compares the needed permissions to perform the requested action and the permissions of

the requesting user. If the user has the needed permissions the Catalogue allows the request, otherwise the

Catalogue forbids the request.

Permission check process:

1. User logs in to the portal (or another platform which gains an access token) with his user credentials

2. User sends an API request to the Catalogue via the portal with an OAuth2/OpenID Connect access

token

3. Catalogue forwards the access token to an external service called SSI Extension Shell provided by

WP1

4 Please refer to appendix E for an overview and explanation of the Work Packages (WP).
5 Please refer to appendix E for an overview and explanation of the Work Packages (WP).

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 14

© 2021. This work is licensed under a CC BY 4.0 license

4. If the access token is valid, the SSI Extension Shell sends the associated verifiable credential (VC) of

the user to the Catalogue

5. Catalogue resolves the role id(s) out of the VC

6. Catalogue checks the permission rights of the role

7. Catalogue compares the assigned permission rights with the needed permissions rights to perform

the requested API call

8. Catalogue allows and executes the API call or forbids it. In case of rejection the Catalogue sends an

error message with status code 403 (Forbidden)

Scope of a Role

The scope of a role describes the breadth of the authorization from the perspective of the participant. In the

Catalogue there are several participants with their own users and Self-Descriptions. Each participant has the

responsibility for its own Objects – for its own scope. For administrative purposes there are participants in

the Catalogue which can manipulate all Objects of all registered participants. So not only for its own scope

but for all scopes.

In particular there are two possible scopes:

a) Own – all Objects of the participant of which it is the owner from

b) All – all Objects in the Catalogue, regardless of the ownership of the Object

Ownership of Self-Descriptions

The owner of a Self-Description is indicated by the attribute providedBy in the associated JSON-LD file of the

Self-Description. The value of this property is a reference to a participant which is designated as owner of the

Self-Description from the perspective of the Catalogue.

The owner of a Self-Description from the perspective of the Catalogue could be another one as the legal

owner of the described physical or virtual asset in the Self-Description. The Federated Catalogue assumes

that the participant has the legal rights to add a Self-Description of the physical or virtual asset.

Defined Roles

The Catalogue must provide a set of roles which can be assigned to users. However, the configuration should

be open for easy adaptation of the roles to be prepared for further versions of the Catalogue. There must be

documentation for the administrators/software engineers of the Catalogue how to add new roles, adjust

existing roles and delete roles.

Each role gets a unique identifier, which is used to reference the roles. In particular, the Verifiable Credential

of the user contains a list of role identifiers of the roles that are assigned to the user.

The table below lists the four provided roles in the Catalogue. In the activity role matrix in section 2.2 exists

an overview about all provided roles and their permissions based on the activities from section 4.5.

ID Description Permissions Scope

Ro-MU-CA Catalogue Administrator All permissions to external and internal activities

of all Objects in the Catalogue. The abbreviation

MU derives from the term Master User.

All

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 15

© 2021. This work is licensed under a CC BY 4.0 license

Ro-MU-A Participant Administrator All permissions to external activities of the own

scope of the participant. The abbreviation MU

derives from the term Master User.

Own

Ro-SD-A Self-Description

Administrator

Users with this role are allowed to create, read,

update, and delete the Self-Descriptions of the

associated participant. E.g., the Self-Description of

all services of the associated participant.

Own

Ro-Pa-A Participant User

Administrator

Users with this role are allowed to create, read,

update, and delete users of the associated

participant. Additionally, they are allowed to and

revoke external roles to other users of the

associated participant. This role is intended for the

administration of users of the participant.

Own

Table 4:Provided Roles by the Catalogue

2.5 Operating Environment

Please refer to [13] for further binding requirements regarding the operating environment.

2.6 User Documentation

The documentation artifacts are grouped into three main categories: Catalogue user documentation,

operator documentation and developer documentation.

Catalogue User Documentation

The End-User Documentation comprises at least the following elements:

● Feature-Complete Description of the REST API

● Description of the openCypher query interface with examples

Catalogue Operator Documentation

The Operator Documentation comprises at least the following elements:

● Setup and configuration of a new Catalogue instance

● Description of operator-specific system access

○ Logging

○ Metrics collection

● Description of the maintenance workflows

○ Backups

○ Schema Management

Developer Documentation

The Developer Documentation comprises at least the following elements:

● All internal APIs are documented

○ Can be generated from source-code annotations if such are available for the selected

programming language.

● The source code has to consist of at least 5% comments.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 16

© 2021. This work is licensed under a CC BY 4.0 license

● Development history from a source code versioning system like git or Subversion.

● Commit messages with motivation for changes.

Please refer to [13] for further requirements regarding documentation.

2.7 Technical Guidance

The major functional dependencies are to the adjacent Gaia-X Federation Services.

The major dependencies on software packages from third parties are mitigated by the selection of

technologies for which multiple Open-Source implementations exist. The following paragraphs denotes some

software components where usually an existing software would be used.

● Webserver for the REST Interface

○ Apache2, Nginx

● Graph Database

○ Neo4J Community Edition, Redis Graph

● Self-Description Administrative Metadata Database

○ MongoDB, Neo4J Community Edition, MySQL/Postgres/SQLite

● Local User Management

○ OpenLDAP, Keystone, Keycloak

● Verifiable Credentials - Verification of Signatures

○ JSON Web Token: See list at https://openid.net/developers/jwt/

● Distributed Ledger Technology

○ ARIES, idUnion

3. Requirements

Further requirements can be found in [13].

3.1 External Interfaces

3.1.1 User Interfaces

The Catalogue provides no user interfaces. The Gaia-X Portal (a separate lot in the GXFS tender)provides a

user interface on top of software interfaces by the Catalogue.

3.1.2 Hardware Interfaces

The Catalogue provides no hardware interfaces.

3.1.3 Software Interfaces

The Catalogue provides no “local” software interfaces. See the next section for the communication

interfaces. The data structures used in externally exposed interfaces are the following:

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 17

© 2021. This work is licensed under a CC BY 4.0 license

1. Self-Descriptions (JSON-LD)

2. Self-Description Schemas (RDF Schema, OWL, SHACL)

3. Verifiable Credentials with user information (participant to which the user belongs, roles, etc.)

4. Self-Description Life Cycle State Update Messages (i.e., REST API calls)

Section 3.2.4 explains data structures (1.) to (3.) more specifically.

3.1.4 Communications Interfaces

As depicted in the High-Level Architecture, the Catalogue provides three main external communication

interfaces.

● REST API

● Authentication and Authorization

All three are described in more detail in Section 4 on the System Features.

The communication with the Catalogue REST API is secured with TLS v1.2 or above.

3.2 Functional Requirements

This section describes functional requirements for the overall system. See Section 4 for detailed requirements

for specific subsystems.

3.2.1 Logging

Some components in the Catalogue, such as databases, provide their own logging facilities. These are

typically able to log into a common log aggregator like syslog, Log4J or similar. Logging across all subsystems

has to be configurable so that an operator can route logs to a central (possibly external) log aggregator if he

wishes to do so.

3.2.2 Backups

The Catalogue state has to be 100% recoverable from backups. An automated backup routine collects all

relevant data and prepares a file-system folder (alternatively a tarball) with compressed data dumps. Backups

of the full system must not interrupt services for more than 10 minutes in a scenario with 1 million Self-

Descriptions. Recovering from backups in that scenario must not take longer than 60 minutes.

3.2.3 Scaling

Subsystems that can become bottlenecks in the number of served requests are implemented in such a way

that enables parallelization. All operations that are accessible from the public API can scale to at least 100

requests per second if not stated otherwise in the detailed non-functional requirements.

3.2.4 Self-Description

The Self-Description documents must contain the metadata about a service offering of Resources, Assets and

Participants in Gaia-X. In the Catalogue, Self-Descriptions must be presented as raw JSON-LD files.

Furthermore, the published Self-Descriptions have to be protected by cryptographic signatures according to

the Verifiable Credentials Data Model, so that they are immutable via communication. In technical terms,

every Self-Description is a Verifiable Presentation of one or more Verifiable Credentials, which makes claims

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 18

© 2021. This work is licensed under a CC BY 4.0 license

about the subject of the Self-Description. The RDF triples inside the Verifiable Credentials have to be valid

instances of the Self-Description Schema.

See the following code listing for a complete demonstration of VCs embedded into a Verifiable Presentation.

This example splits a Provider Self-Description into multiple Credentials and adds proofs from particular

(external) institutions to the respective parts. In this example, the street address is signed by the German

Handelsregister (company register), while ISO-9001 and DUNS declarations are each signed by respective

(external) institutions. At the very end, the Provider themselves adds a final proof to the overall Verifiable

Presentation of all Credentials.

{

 "@context": [

 "https://www.w3.org/2018/credentials/v1",

 "https://w3id.org/gaia-x/context.jsonld"

],

 "type": "VerifiablePresentation",

 "verifiableCredential": [

 {

 "@context": [

 "https://www.w3.org/2018/credentials/v1",

 "https://w3id.org/gaia-x/context.jsonld"

],

 "id": "http://example.edu/credentials/1872",

 "type": "VerifiableCredential",

 "issuer": "https://www.handelsregister.de/",

 "issuanceDate": "2010-01-01T19:73:24Z",

 "credentialSubject": {

 "@id": "http://example.org/add-your-provider-id-or-website-here",

 "@type": "gax:Provider",

 "gax:hasLegallyBindingName": "My example provider",

 "gax:hasLegallyBindingAddress": {

 "id": "_:b0",

 "type": "vcard:Address",

 "vcard:street-address": "Example street 2",

 "vcard:postal-code": "99999",

 "vcard:country-name": "Country Name 2",

 "vcard:locality": "City Name 2"

 }

 },

 "proof": {

 "type": "RsaSignature2018",

 "created": "2017-06-18T21:19:10Z",

 "proofPurpose": "assertionMethod",

 "verificationMethod": "https://example.edu/issuers/keys/1",

 "jws":

"eyJhbGciOiJSUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..TCYt5XsITJX1Cx

PCT8yAV-TVkIEq_PbChOMqsLfRoPsnsgw5WEuts01mq-pQy7UJiN5mgRxD-

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 19

© 2021. This work is licensed under a CC BY 4.0 license

WUcX16dUEMGlv50aqzpqh4Qktb3rk-BuQy72IFLOqV0G_zS245-

kronKb78cPN25DGlcTwLtjPAYuNzVBAh4vGHSrQyHUdBBPM"

 }

 },

 {

 "@context": [

 "https://www.w3.org/2018/credentials/v1",

 "https://w3id.org/gaia-x/context.jsonld"

],

 "id": "http://example.edu/credentials/1874",

 "type": "VerifiableCredential",

 "issuer": "https://www.example-cert-institution.de/",

 "issuanceDate": "2010-01-01T19:73:24Z",

 "credentialSubject": {

 "@id": "http://example.org/add-your-provider-id-or-website-here",

 "@type": "gax:Provider",

 "gax:hasCertification": "gax:ISO_9001"

 }

 },

 {

 "@context": [

 "https://www.w3.org/2018/credentials/v1",

 "https://w3id.org/gaia-x/context.jsonld"

],

 "id": "http://example.edu/credentials/1875",

 "type": "VerifiableCredential",

 "issuer": "https://www.example-identifier-institution.org",

 "issuanceDate": "2010-01-01T19:73:24Z",

 "credentialSubject": {

 "@id": "http://example.org/add-your-provider-id-or-website-here",

 "@type": "gax:Provider",

 "gax:hasBusinessIdentifier": {

 "@id": "_:b1",

 "@type": "gax:BusinessIdentifier",

 "gax:hasIdentifierNumber": "12-345-6789",

 "gax:hasIdentifierSystem": "DUNS"

 }

 }

 }

],

 "proof": {

 "type": "RsaSignature2018",

 "created": "2018-09-14T21:19:10Z",

 "proofPurpose": "authentication",

 "verificationMethod": "did:example:ebfeb1f712ebc6f1c276e12ec21#keys-

1",

 "challenge": "1f44d55f-f161-4938-a659-f8026467f126",

 "domain": "4jt78h47fh47",

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 20

© 2021. This work is licensed under a CC BY 4.0 license

 "jws":

"eyJhbGciOiJSUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..kTCYt5XsITJX1C

xPCT8yAV-TVIw5WEuts01mq-

pQy7UJiN5mgREEMGlv50aqzpqh4Qq_PbChOMqsLfRoPsnsgxD-WUcX16dUOqV0G_zS245-

kronKb78cPktb3rk-BuQy72IFLN25DYuNzVBAh4vGHSrQyHUGlcTwLtjPAnKb78"

 }

}

3.2.5 Performance Requirements

3.2.5.1 Response Time

Response times of various activities in a Catalogue are clearly identified. Measurement points include the

response time of updating a Self-Description, the result response of a query request as well as

synchronization requests of distributed Self-Descriptions. 95% of all response time should be less than 5

seconds. In case of longer delays, the Catalogue will give feedback indicating when it expects the operation

to be done.

3.2.5.2 Workload

The Catalogue must support the following workload:

● Catalogue must handle 100 read transaction of Self-Description per second

● Catalogue must handle 50 update transactions of Self-Description per second

● Catalogue must handle 20 query transactions over the Self-Description Graph per second

3.2.5.3 Accuracy

The Catalogue must provide high accuracy for returned results of query requests. The accuracy of returned

results must be higher than 99%.

3.2.6 Safety Requirements

None

3.2.7 Security Requirements

As one of the Gaia-X Federation Services, Federated Catalogue must ensure Security and Privacy by Design

(SPBD) documented in [6]. In general, constructing Security and Privacy by design requirements is considered

in two steps. The first step is to define protection goals of assets deployed on each technical component.

Protection goals including confidentiality, integrity and non-repudiation for each asset are listed in [6] Table

2. Then, based on the deduction in the first procedure, the protection profile of individual technical

components in the Catalogue can be derived (indicated in Table 3 in [6]), which leads to the classification of

Assurance Levels for Catalogue. In conclusion, three technical components in Catalogue, which are Catalogue

Query, Catalogue Management, and Inter-Catalogue Synchronization, own a basic Assurance Level. A general

overview of standards related to security and privacy is provided in Table 7 of [6].

The EUCS defines 20 control categories [6]. Several of them are applicable to Gaia-X Federated Catalogue and

the details of each requirement are listed as the following.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 21

© 2021. This work is licensed under a CC BY 4.0 license

3.2.7.1 Identity, Authentication, and Access Control Management

ID Description Acceptance Criteria Priority

SR-Access-01 Each client must have a correct identity claim. Execute a request from a client

with an arbitrary identity claim.

This request must be rejected.

Mandatory (Phase 1)

SR-Access-02 Identity of a signing party of the identity claim is

not revoked.

Execute a request from a client,

whose identity claim is signed by

a revoked identity. This request

must be rejected.

Mandatory (Phase 1)

SR-Access-03 The Catalogue uses OpenID Connect on top of

OAuth2 for authentication of a user.

Execute a request without an

authorizationUrl, the request

must be rejected.

Mandatory (Phase 1)

SR-Access-04 All elements in the Catalogue need to be

protected from unauthorized access.

Execute a query request for

protected information with:

a) no user information (request

must be rejected with response

stating ‘unauthorized’),

b) arbitrary user information

(request must be rejected with

response stating ‘unauthorized’),

c) correct user information of a

user who is not allowed to access

the target information (request

must be rejected with response

stating ‘unauthorized’),

d) user that is allowed to access

the information and with correct

authentication information

(request is processed and

information returned)

Mandatory (Phase 1)

GraS-SR-01 Backup of Self-Description Graph needs to be

encrypted.

The data encryption should be

performed on the client before

sending the copy to the server

that will keep it.

Mandatory (Phase 1)

Table 5:Security Requirements Identity, Authentication, and Access Control Management

3.2.7.2 Cryptography and Key Management

ID Description Acceptance Criteria Priority

SR-Crypto-01 All elements in the Catalogue must be protected

by cryptographic signatures according to the

Verifiable Credentials Data Model.

Execute a request to an arbitrary

element in the Catalogue

without a cryptographic

signature, the request must be

rejected.

Mandatory (Phase 1)

SR-Crypto-02 Query can ask for specific signatures or

characteristics.

The Federated Catalog must

provide the cryptographic proofs

(signatures of the underlying

JSON-LDs) to enable the

querying system to check the

correctness of the query result.

Mandatory (Phase 1)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 22

© 2021. This work is licensed under a CC BY 4.0 license

SR-Crypto-03 A signature indicating the date of the incoming

messages needs to be logged.

There must be timestamps for all

incoming messages.

Mandatory (Phase 1)

SR-Crypto-04 A signature indicating the one-to-one relation

between Self-Description and Self-Description

Graph is necessary.

The proof signature of the SD in

the SD Storage System must be

equal to the related SD resource

in the SD Graph.

Mandatory (Phase 1)

SR-Crypto-05 Express required trust of the Self-Descriptions in

the query.

The sender of the query is able to

set a flag to ask also for SDs with,

for instance, expired or revoked

states. If the flag is set, the

returned result list must contain

the respective matching SDs. If

the flag is not set, only valid SDs

with proper signatures and in the

‘active’ life cycle state must be

returned.

Mandatory (Phase 1)

SR-Crypto-06 Backup of Self-Description Graph needs to be

encrypted.

The import of a previously

backed up SD Graph must only

be possible if the correct

password is used. The SD Graph

must not export its content

without setting an encryption

password.

Mandatory (Phase 1)

Table 6: Security Requirements Cryptography and Key Management

3.2.7.3 Communication Security

ID Description Acceptance Criteria Priority

SR-Comm-01 The outside communication with REST API needs

to be encrypted.

Executing a query request

without encryption or invalid

encryption will be rejected.

Mandatory (Phase 1)

SR-Comm-02 Only TLS interaction is supported.

Only state-of-the-art TLS

versions, i.e., > 1.2, should be in

use.

Mandatory (Phase 1)

SR-Comm-03 The incoming messages must be valid and

uncorrupted.

Send a corrupted message to a

Gaia-X Federated Catalogue, it

must reject it.

Mandatory (Phase 1)

Table 7:Security Requirements Communication Security

3.2.8 Data Standards

ID Description Acceptance Criteria Priority

DS-01 The schemas used for the self-description SHALL

follow open standards

Definition and/or usage of an

open non-proprietary standard

 Mandatory (Phase 1)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 23

© 2021. This work is licensed under a CC BY 4.0 license

available also for future

participants

Table 8:Data Standards

4. System Features

The Gaia-X Catalogue follows a Micro-Service architecture with several different modules as stated in Section

2.2.4. The following requirements define these modules and describe their respective interfaces.

4.1 Self-Description Storage Subsystem

4.1.1 Description

Self-Descriptions are represented as graphs in the RDF data model, using terms from the Self-Description

Schema. Gaia-X has adopted JSON-LD as its preferred serialization for RDF (cf. ADR-001 in [12]). The

Federated Catalogue stores each Self-Description as one JSON-LD file, once it has accepted it as valid.

The Provider or Asset owner who submitted a Self-Description may update it. The Federated Catalogue will

retain previous versions of such updated Self-Descriptions, and clients will be able to retrieve each version

of a Self-Description.

For the purpose of querying, the most recent versions of all Self-Descriptions will be indexed into the Self-

Description Graph as explained in Section 4.4.

To organize the indexing, versioning, etc. of Self-Descriptions, the Federated Catalogue maintains

Administrative Metadata about each Self-Description, including in what state of the life cycle according to

ADR-003 [12] it is, etc. These metadata are not included inside the Self-Descriptions and are not required to

be expressed in terms of the Self-Description Schema. Instead, the schema of Administrative Metadata is

specified informally, as follows6:

Key Datatype Description

id URI The identifier of the Participant or Asset being

described, same as the common credentialSubject

of the Verifiable Credentials inside the Self-

Description

hash string (hexadecimal) A hashcode computed over the JSON-LD Self-

Description

issued date (xsd:dateTimeStamp) Date when the Self-Description was originally

issued by the Participant

received date (xsd:dateTimeStamp) Date when the Self-Description was first received

by this Federated Catalogue

6 See also Appendix C for a possible representation of the Self-Description metadata in SQL.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 24

© 2021. This work is licensed under a CC BY 4.0 license

state one of "active", "deprecated", "revoked"

or "eol" (for “end-of-life”)

State in the Self-Description life cycle as defined

in Section 2.3

issuedBy URI Identifier of the Participant that has issued the

Self-Description

Table 9: Self-Description Keys, Datatypes and Descriptions

A system MAY use further keys.

Four kinds of REST API Requests to Self-Description Storage

There are four types of API requests to Federated Catalogue, each of which gets access to Self-Description

Storage. The workflow of them is introduced as the following respectively and more details of REST API

Requests are specified in Section 4.5.

The first kind of API request is for data consumers to retrieve a list of the Administrative Metadata of those

SDs such that these Administrative Metadata match certain given filters, as indicated in Figure 4. A variant of

this request takes a query for Participants or Assets instead of simple filters, executes the query over the SD

Graph as specified in Section 4.4, but returns, rather than the query result as returned by the graph database,

the Administrative Metadata of the SDs in the result set of the query.

Figure 4: Workflow of retrieving a list of Administrative Metadata of SDs based on filters

Then, for data consumers, there is another variant of this request, which retrieves, in addition to the

Administrative Metadata, also the raw JSON-LD Self-Descriptions. The process of this procedure is depicted

in Figure 5.

Figure 5: Workflow of retrieving raw JSON-LDs and Administrative Metadata

Technically, the result of such a query, which combines raw JSON-LD Self-Descriptions and Administrative

Metadata shall have the following structure7:

{

 "results": [

7 This is inspired by the result format of the Neo4j Cypher transaction API, cf. https://neo4j.com/docs/http-

api/current/actions/result-format/. It is not required to refer to the JSON-LD context of the Verifiable Credentials Data

Model exactly as given below, but the column type https://www.w3.org/2018/credentials#VerifiablePresentation must

be used, and a reference to that context is a straightforward way of achieving that.

https://creativecommons.org/licenses/by/4.0/
https://neo4j.com/docs/http-api/current/actions/result-format/
https://neo4j.com/docs/http-api/current/actions/result-format/

Software Requirements Specification for FC.CCF Page 25

© 2021. This work is licensed under a CC BY 4.0 license

 {

 "@context": "https://www.w3.org/2018/credentials/v1",

 "columns": ["VerifiablePresentation"],

 "data": [

 {

 // first matching Self-Description

 "row": [{ "type": "VerifiablePresentation",

"verifiableCredential": …, "proof": … }],

 "meta": [{ "issued": …, "received": …, "state": … }

]

 },

 {

 // second matching Self-Description (if any)

 "row": [{ "type": "VerifiablePresentation",

"verifiableCredential": …, "proof": … }],

 "meta": [{ "issued": …, "received": …, "state": … }

]

 },

 …

]

 }

]

}

Listing 4.1: Result format for Raw JSON-LD Self-Descriptions with Administrative Metadata

Note that, in large federations, it may be necessary to distinguish Self-Descriptions by their application

domain or the data space / data ecosystem they originated from, e.g., “healthcare” vs. “logistics”, and to

retrieve only Self-Descriptions from one of these domains. This, however, does not require an additional

Administrative Metadata field, but is supported because the Core Ontology, which provides the foundation

for any Self-Description Schema, provides the gax:theme property, a specialization of dcat:theme from DCAT,

which indicates one or more categories that a resource belongs to. Any such category is identified by a URI,

which should point to a concept in a Controlled Vocabulary. This may be an external, existing Controlled

Vocabulary, or one that is maintained locally using the Schema Storage Subsystem of the Federated

Catalogue (cf. Section 4.2).

When a new SD is added to Catalogue or the status of life cycle needs to be updated, the SHACL Module and

Cryptographic signature validation workflows must be executed, which are represented in Figure 6 and Figure

7 respectively. Details of Cryptographic signature validation is in Figure 9 in Section 4.3.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 26

© 2021. This work is licensed under a CC BY 4.0 license

Figure 6:Workflow of adding a new SD to Catalogue

The step “Synch with other Catalogues” is optional and handled by the future Inter-Catalogue

Synchronization module according to Sync-F-06. Not in scope for Release 1.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 27

© 2021. This work is licensed under a CC BY 4.0 license

Figure 7:Workflow of changing the life cycle state of SDs

4.1.2 Functions

4.1.2.1 Adding a new Self-Description

ID Description Acceptance Criteria Priority

SD-S-S-01 A Provider MUST be able to add a new Self-

Description to the Catalogue

“Workflow of adding a new SD to

Catalogue” implemented

according to Figure 6

Mandatory (Phase 1)

SD-S-S-02 The Federated Catalogue MUST be able to

synchronize a new Self-Description from a

remote Federated Catalogue.

Like SD-S-S-01, but the action is

performed by the Inter-

Catalogue Synchronization

mechanism rather than by a

Participant.

Mandatory (Phase 1)

Table 10: Self-Description Storage Subsystem Functions - Adding a new Self Descriptions

4.1.2.2 Syntactic Validation

ID Description Acceptance Criteria Priority

SD-S-V-01 The Federated Catalogue MUST be able to

validate the syntactic well-formedness of Self-

Descriptions against the JSON-LD grammar8.

Unit test with a well-formed and

a non-well-formed JSON-LD

input

Mandatory (Phase 1)

8 https://www.w3.org/TR/2020/REC-json-ld11-20200716/#json-ld-grammar

https://creativecommons.org/licenses/by/4.0/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/#json-ld-grammar

Software Requirements Specification for FC.CCF Page 28

© 2021. This work is licensed under a CC BY 4.0 license

Table 11: Self-Description Storage Subsystem Functions - Syntactic Validation.

4.1.2.3 Changing the Life Cycle State of Self-Descriptions

ID Description Acceptance Criteria Priority

SD-S-U-01 The Federated Catalogue MUST accept requests

for changing the life cycle state of a Self-

Description. In the case of a transition to

“deprecated”, a newer Self-Description for the

same subject MUST be provided. Otherwise, a

hashcode MUST be provided.

Each transition defined in the

state diagram in Section 2.3

MUST be implemented

according to the “workflow of

changing the life cycle state of

SDs” given in Figure 7.

Mandatory (Phase 1)

Table 12: Self-Description Storage Subsystem Functions - Changing the Life Cycle State of Self-Descriptions

4.1.2.4 Retrieving Self-Descriptions

ID Description Acceptance Criteria Priority

SD-S-R-01 The Federated Catalogue MUST answer

requests for Self-Descriptions with OPTIONAL

filter criteria in terms of Administrative

Metadata, e.g., the date when it was received

by the Catalogue. “active” MUST be used as the

default value for the life cycle state. The filtering

expression language MUST allow for the union

of multiple states, as well as a range of dates. A

number to limit the number of results MAY be

provided.

A request without filter criteria

MUST result in a list of

Administrative Metadata of Self-

Descriptions. In the absence of a

limit, the result MUST include all

Self-Descriptions in the

Catalogue. If filter criteria were

given, the result MUST include all

matching Self-Descriptions. If a

limit was given, the length of the

result list MUST be limited to

that number. It is not specified

what potential results to include

in the limited list.

Mandatory (Phase 1)

SD-S-R-02 The Federated Catalogue MUST answer

requests for the Administrative Metadata of

active Self-Descriptions that match a query that

results in a set of Participants or Assets. This

request has the same result type as SD-S-R-01

but takes as input a query rather than filter

criteria. The query SHALL be executed according

to Q-F-01.

The set of Self-Description

subject IDs in the Administrative

Metadata returned by this query

MUST equal the set of Self-

Description IDs in the result set

of the query according to Q-F-01.

To be tested at least with a query

that is expected to return the

empty set and a query that is

expected to return a non-empty

set.

Mandatory (Phase 1)

SD-S-R-03 The Federated Catalogue MUST answer

requests for Self-Descriptions as in SD-S-R-01 or

SD-S-R-02, but returning the results as raw

JSON-LD documents with Administrative

Metadata

A request for Self-Descriptions

with Administrative Metadata

must follow the Result format for

Raw JSON-LD Self-Descriptions

with Administrative Metadata as

specified above in Listing 4.1.

Mandatory (Phase 1)

Table 13: Self-Description Storage Subsystem Functions - Retrieving Self-Descriptions

4.1.3 Provided Internal Interfaces

Read/Write access to the raw Self-Descriptions and lifecycle metadata.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 29

© 2021. This work is licensed under a CC BY 4.0 license

Basic Query capabilities on the Self-Description lifecycle metadata.

4.1.4 Consumed Internal Interfaces

The Self-Description Storage Subsystem consumes the following internal interfaces:

● Interface of the Semantics and Trust Verification Subsystem, to validate the cryptographic signatures

of Self-Descriptions (ST-V-T-01), and to perform semantic validation (ST-V-V-03)

● Interface to the query execution specified in Q-F-01 in Section 4.4

4.1.5 Functional Requirements

ID Description Acceptance Criteria Priority

SD-S-F-01 The Federated Catalogue MUST perform

syntactic validation (SD-S-V-01) on any Self-

Description that is being submitted or updated

and reject non-well-formed input with HTTP

error code 400 Bad Request.

Unit test with a well-formed

JSON-LD and a non-well-formed

Self-Description implemented

Mandatory (Phase 1)

SD-S-F-02 The Federated Catalogue MUST perform

semantic validation (ST-V-V-03) on any Self-

Description that is being submitted or updated

and that is syntactically well-formed (SD-S-F-

01). Invalid input must be rejected with HTTP

error code 422 Unprocessable Entity.

Unit test with a well-formed Self-

Description that validates

against the Self-Description

Schema and another well-

formed one that does not

validate

Mandatory (Phase 1)

SD-S-F-03 The Federated Catalogue MUST continually

check the temporal validity of the digital

certifications contained in the Self-Description.

Any Self-Description with an

expired certificate MUST be

transitioned to the “revoked”

state.

Mandatory (Phase 1)

SD-S-F-04 The Federated Catalogue MUST keep track of all

Schema terms that are used by Self-

Descriptions, i.e., properties (used as predicates

of RDF triples, regardless of whether declared in

a Schema known to the Catalogue), classes

(used as objects in RDF triples whose predicate

is rdf:type, regardless of whether declared in a

Schema known to the Catalogue), and

individuals (only those declared in a Schema

known to the Catalogue). This functionality MAY

be implemented using the same graph database

that is also used by the Graph and Query

Subsystem.

Unit test that adds a Self-

Description and subsequently

queries the database that keeps

track of Schema term usage to

ensure that the terms used in the

Self-Description have been

added.

Mandatory (Phase 1)

Table 14: Self-Description Storage Subsystem Functional Requirements

4.1.6 Non-Functional Requirements

ID Description Acceptance Criteria Priority

SD-S-NF-01 Requests for changing the life cycle state of a

Self-Description by any Participant that is not

the subject of the proof (signature) of the

Verifiable Presentation that constitutes the

Unit test with requests from the

Participant who originally added

the Self-Description to the

Catalogue (to be accepted) and a

Mandatory (Phase 1)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 30

© 2021. This work is licensed under a CC BY 4.0 license

given Self-Descriptions MUST be rejected with

HTTP error code 401 Unauthorized.

different Participant (to be

rejected)

SD-S-NF-02 After adding or updating a Self-Description of a

subject, the Federated Catalogue MUST return,

when asked for the Self-Description of that

same subject, the same Self-Description that

was submitted with the add (SD-S-S-01) or

update (SD-S-U-01) operation.

Add or update a Self-Description,

then execute one of the SD-S-R-*

retrieval operations, which is

expected to return exactly that

Self-Description. The returned

raw Self-Description MUST

literally match the JSON-LD

document that was submitted.

Mandatory (Phase 1)

SD-S-NF-03 The Federated Catalogue MUST be able to store

multiple versions of the Self-Description of the

same subject.

Execute SD-S-U-01 to perform

the transition of a Self-

Description S of some subject to

“deprecated” and update it by a

new Self-Description S’. When

using SD-S-R-01 to retrieve all

Self-Descriptions of that subject,

the request MUST return at least

S in state “deprecated” and S’ in

state “active”.

Mandatory (Phase 1)

SD-S-NF-07 About any subject, there MUST be at most one

Self-Description with life cycle state “active” in

a Federated Catalogue.

Invoke SD-S-S-01 or SD-S-U-01

with a Self-Description that has

been added before, then execute

SD-S-R-01 to retrieve all active

Self-Descriptions about the same

subject. Make sure that exactly

one Self-Description is returned.

Mandatory (Phase 1)

Table 15: Self-Description Storage Subsystem Non-Functional Requirements

4.2 Schema Storage Subsystem

4.2.1 Description

For validating Self-Descriptions, the Federated Catalogue needs to know the schema to validate against. The

primary schema is the Gaia-X Self-Description Schema. Supporting the Self-Description Core Ontology (cf.

Appendix A) is mandatory for the Federated Catalogue. Further standard Gaia-X Self-Description Schemas

Specific ecosystems, specific data spaces, etc., may require additional attributes beyond those defined in the

Gaia-X Self-Description Schema. Thus, the Federated Catalogue shall be able to store additional Self-

Description Schemas.

Such additional schemas must not define terms in the Gaia-X namespace http://w3id.org/gaia-x/core#. This

namespace is reserved for the Gaia-X AISBL. Serializations, e.g., in JSON-LD, must not bind the gax prefix to

any namespace other than http://w3id.org/gaia-x/core#.

Technically, Self-Description Schemas have the same format as Self-Descriptions. I.e., they are RDF graphs

serialized as JSON-LD. A Self-Description Schema is made up of the following components:

1. An ontology for defining the terms (mandatory): the terms of a schema, i.e., entity types (classes)

and the attributes (properties) that such entities may hold, as well as certain instances (individuals)

of such entity types, are formally defined and documented as classes and properties in ontologies.

https://creativecommons.org/licenses/by/4.0/
http://w3id.org/gaia-x/core
http://w3id.org/gaia-x/core

Software Requirements Specification for FC.CCF Page 31

© 2021. This work is licensed under a CC BY 4.0 license

The Federated Catalogue shall support ontologies expressed in RDF Schema and/or the OWL Web

Ontology Language.

2. Shapes to validate against (mandatory): for the purpose of validation, the expected usage of classes

and properties in Self-Descriptions shall be defined in shapes in the SHACL Shapes Constraint

Language.

3. Controlled vocabularies (optional9): to provide Self-Description authors guidance regarding

frequently used attribute values, and to avoid ambiguous or underspecified attribute values, it may

be helpful to define controlled vocabularies, from which the values of certain attributes should be

drawn, rather than being expressed as free-form strings. Every term in a controlled vocabulary has a

unique identifier and a semantically structured definition, like a term in an ontology. The Federated

Catalogue shall support controlled vocabularies modelled as concept schemes in the SKOS Simple

Knowledge Organization Scheme.

Syntactically, RDF Schema and OWL ontologies, SHACL shapes and SKOS controlled vocabularies are, once

more, RDF graphs, for which the Federated Catalogue should support the JSON-LD serialization.

The Federated Catalogue stores Schemas in the same way as explained for Self-Descriptions in Section 4.1

(minus the validation of cryptographic signatures, which are not required for Schemas), applies Graph and

Query functionality to them as specified in Section 4.4, as well as Inter-Catalogue Synchronization as specified

in Section 4.5. In Phase 1, two features, which are mandatory for Self-Description Storage, are not yet

mandatory for Schema Storage. This is to reduce management overhead.

● The Federated Catalogue is not required to provide a public API for submitting and updating

Schemas. Instead, a Catalogue Administrator user with administrative permissions may upload the

respective files.

● The Federated Catalogue is not required to retain previous versions of a Schema beyond the

execution of function SD-Sch-F-05 as specified below.

In Phase 1, it is therefore possible that a Catalogue, after some Schema updates, contains Self-Descriptions

that are not valid w.r.t. the Schema(s) stored in the Catalogue (But see SD-Sch-NF-05 for Phase 2.).

9 The Federated Catalogue is required to support controlled vocabularies. However, not every Self-Description Schema

is required to comprise a controlled vocabulary.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 32

© 2021. This work is licensed under a CC BY 4.0 license

Figure 8: Schematic inheritance relations and properties for the top-level Self-Description

4.2.2 Functions

ID Description Acceptance Criteria Priority

SD-Sch-01 Catalogue Administrators MUST be able to

submit Self-Description Schemas.

Carry out manual submission of a

Schema

Mandatory (Phase 1)

SD-Sch-02 Participants MUST be able to submit Self-

Description Schemas like with Self-Descriptions

using SD-S-S-01 (minus the validation of

cryptographic signatures).

Cf. SD-S-S-01 (minus the

validation of cryptographic

signatures).

Optional (Phase 2)

SD-Sch-03 Catalogue Administrators MUST be able to

delete Self-Description Schemas. (Phase 1 only)

Carry out manual deletion of a

Schema

Mandatory (Phase 1)

SD-Sch-04 The Federated Catalogue MUST accept requests

for changing the life cycle state of a Self-

Description Schema from the same Participant

who submitted the Schema, using SD-S-U-01

(minus the validation of cryptographic

signatures). (In the case of

updating/deprecating Schemas, “same-ness” is

determined by the Ontology IRI.)

Cf. SD-S-U-01 (minus the

validation of cryptographic

signatures).

Optional (Phase 2)

SD-Sch-05 The Federated Catalogue MUST be able to

return the Union Graph of all Self-Description

Schemas, defined as the union of the RDF

graphs of the Self-Description Core Ontology as

well as all additional Self-Description Schemas

(including Controlled Vocabularies) that have

been added to the Catalogue. This functionality

MAY be implemented using the same graph

database that is also used by the Graph and

Query Subsystem. (Note that all the other

Test with a triple that occurs in

an individual Schema: This triple

MUST also occur in the Union

Graph.

Mandatory (Phase 1)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 33

© 2021. This work is licensed under a CC BY 4.0 license

retrieval functions SD-S-R-* apply to Schemas as

well.)

Table 16: Schema Storage Subsystem Functions

4.2.3 Provided Internal Interfaces

SD-Sch-05 is exposed to the Semantics and Trust Verification Subsystem.

4.2.4 Consumed Internal Interfaces

The Schema Storage Subsystem consumes the following internal interfaces in a Catalogue to implement

necessary actions:

● Of SD-S-S-01 and SD-S-U-01 in the Self-Description Storage Subsystem, the sub-steps that do not

involve cryptographic signatures, are exposed to the Schema Storage Subsystem.

● SD-V-V-03 from the Semantics and Trust Verification Subsystem is used for validation.

4.2.5 Functional Requirements

ID Description Acceptance Criteria Priority

SD-Sch-F-01 The Federated Catalogue MUST be pre-loaded

with the Self-Description Core Ontology as given

in Appendix A.

Queries for key terms of the Self-

Description Core Ontology

Mandatory (Phase 1)

SD-Sch-F-02 The Federated Catalogue MUST accept the

submission of Schemas that are valid instances10

of the RDF Schema, OWL, SHACL or SKOS

specifications and that are represented as RDF

graphs in the JSON-LD serialization.

Acceptance of the JSON-LD

version of the Self-Description

Core Ontology

Mandatory (Phase 1)

SD-Sch-F-03 The Federated Catalogue SHOULD accept the

submission of Schemas that are valid instances of

the RDF Schema, OWL, SHACL or SKOS

specifications and that are represented as RDF

graphs in any serialization other than JSON-LD,

e.g., RDF/XML or Turtle.

Acceptance of the Self-

Description Core Ontology,

converted to RDF/XML or Turtle

Mandatory (Phase 1)

SD-Sch-F-04 The submission of a Schema S’ that has the same

Ontology IRI as a Schema S that is already present

in the Federated Catalogue SHALL result in S

being deprecated by S’. (fulfilled by SD-Sch-04 in

Phase 2)

Submit Schema S, then another

Schema S’ with the same

Ontology IRI.

Mandatory (Phase 1)

SD-Sch-F-05 Once having accepted the submission of a

Schema S’ or executing the deletion of a Schema

S’, the Federated Catalogue MUST validate (by

applying SD-V-V-03) each Self-Description in the

Catalogue that uses terms from S’ according to

SD-S-F-04. If S’ deprecates a previous Schema S

according to SD-Sch-F-04, the Federated

Catalogue MUST also validate any additional Self-

Descriptions (if any) that use terms from S. Self-

Test with a Schema S’ that

invalidates a Self-Description in

the Catalogue

Mandatory (Phase 1)

10 Acknowledging the existence of dedicated libraries for these languages, we do not mandate validation to be

performed like the validation of a Self-Description against a Schema (cf. ST-V-V-03) but require validation according to

the specifications of the respective languages.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 34

© 2021. This work is licensed under a CC BY 4.0 license

Descriptions that fail the validation MUST be

flagged invalid, e.g., via a respective

Administrative Metadata field for internal

purposes.

SD-Sch-F-06 The Federated Catalogue MUST keep track of

what versions of what Schemas a valid Self-

Description was validated against.

Unit test that adds Schema S, a

Self-Description SD using terms

from S, and subsequently

queries the database that keeps

track of validation to ensure that

it contains the information that S

is a valid instance of SD.

Optional (Phase 2)

Table 17: Schema Storage Subsystem Functional Requirements

4.2.6 Non-Functional Requirements

ID Description Acceptance Criteria Priority

SD-Sch-NF-01 The Federated Catalogue MUST NOT accept the

submission of a Schema that does not have an

Ontology IRI as specified by OWL [9].

Test with a Schema that has no

Ontology IRI

Mandatory (Phase 1)

SD-Sch-NF-02 The Federated Catalogue MUST NOT accept the

submission of a Schema that does not have a

Version IRI as specified by OWL [9].

Test with a Schema that has no

Version IRI

Optional (Phase 2)

SD-Sch-NF-03 Other than during an update of a Schema with a

new version (i.e., having the same Ontology IRI),

the Federated Catalogue MUST NOT accept the

submission of a Schema that redefines terms

that have already been defined in this

Catalogue. The submission of SHACL shapes,

which apply (e.g., via sh:targetClass or sh:path)

to classes or properties for which only RDF

Schema or OWL axioms have so far been

defined in the Federated Catalogue does not

count as a “redefinition”. This is to allow for the

common practice of storing SHACL shapes in

files separate from the ontology.

Submit a Schema S that defines a

certain term, then submit a

Schema S’ with a different

Ontology IRI that defines the

same term.

Mandatory (Phase 1)

SD-Sch-NF-04 The Federated Catalogue MUST NOT accept

from a Participant the submission of a Schema

that defines terms in the reserved

http://w3id.org/gaia-x/core# namespace or

whose serialization binds the gax: prefix to any

namespace other than that. This SHOULD be

implemented as soon as SD-Sch-S-02 has been

implemented.

Test with a Schema that defines

terms in the

http://w3id.org/gaia-x/core#

namespace or whose

serialization binds the gax: prefix

to any namespace other than

that.

Optional (Phase 2)

SD-Sch-NF-05 At any point in time, for each Self-Description in

the Catalogue whose life cycle state is “active”,

there MUST be a Schema in the Catalogue of

which the Self-Description is a valid instance.

Test with a Self-Description and a

sequence of Schema updates

Optional (Phase 2)

Table 18: Schema Storage Subsystem Non-Functional Requirements

https://creativecommons.org/licenses/by/4.0/
http://w3id.org/gaia-x/core
http://w3id.org/gaia-x/core

Software Requirements Specification for FC.CCF Page 35

© 2021. This work is licensed under a CC BY 4.0 license

4.3 Semantics and Trust Verification Subsystem

4.3.1 Description

The Semantics and Trust Verification Subsystem performs two complementary activities to ensure a high

quality of Self-Descriptions:

1. it validates Self-Descriptions against a Schema, thus assuring a certain level of data quality, and

2. it establishes trust into Self-Descriptions by verifying the cryptographic signatures attached to it.

Validation against the kind of Schemas introduced in Section 4.2 is more than just checking for syntactic well-

formedness. The expressive power of SHACL additionally supports lightweight semantics.

Regarding Trust, the Federated Catalogue needs to be able to check that any Self-Description added to the

Catalogue has a cryptographic proof and that this proof is correct – in other words: that the claims made

about the subject of a Self-Description have been confirmed by someone (e.g., by the Provider or by an

external evaluation facility) and have not been tampered with afterwards. Note that the correctness of a

proof does not mean that the corresponding claims are true. When issues arise during the verification of

trust of a Self-Description added to the Catalogue, the indication of failure may be returned to the registering

Participant.

Verification of the trust in a Self-Description ultimately resides at the end user who is given access to the raw

Self-Descriptions in JSON-LD format. The Catalogue internally performs trust verifications in two cases:

3. When it receives a Self-Description through the REST API or the Inter-Catalogue Synchronization. This

acts as a filter where untrusted Self-Descriptions are rejected.

4. When a user requests to do a verification on a Self-Description supplied by the user.

The major verification steps for trust are:

5. Verify that a proof (i.e., a signature) is present on the overall Verifiable Presentation, e.g., the outer

structure of every Self-Description.

6. Validate that the JSON-LD document of the Verifiable Presentation was not altered by verifying its

proof according to the respective proof suite verification algorithm, as specified by the Verifiable

Credentials Data Model [5]. This typically involves retrieving the public key of the issuer of the Self-

Description.

7. From within the Self-Description, determine the identifier of the provided of the thing that is

described. Every possible class from the Self-Description schemas (except for Participants

themselves) references the provider-Participant via the “providedBy” property.

8. Verify, if possible, if the manager has a Self-Description as a Participant using the same identifier.

9. Verify that the manager is also the issuer of the Self-Description and has signed the overall Self-

Description.

10. Verify that the issuer’s certificate has not been revoked.

11. Verify that the certificates of further signers of the Self-Description have not been revoked.

12. Verify that the expiration date is in the future.

All these steps are repeated for each Verifiable Credential inside the Verifiable Presentation.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 36

© 2021. This work is licensed under a CC BY 4.0 license

Figure 9: Workflow of details of Cryptographic signature validation

4.3.2 Functions

4.3.2.1 Validating a Self-Description against the Schema

ID Description Acceptance Criteria Priority

ST-V-V-01 The Federated Catalogue MUST be able to

extract, from the representation of a Self-

Description as a Verifiable Presentation, the

plain, unsigned Self-Description, i.e., the union

of all credentialSubjects. This relies on all

Credentials having the same subject.

A query that checks whether the

set of all triples nested into

verifiableCredential/credentialSu

bject in the Verifiable

Presentation equals the set of all

triples extracted into the plain,

unsigned Self-Description

Mandatory (Phase 1)

ST-V-V-02 The Federated Catalogue MUST be able to

validate a plain, unsigned Self-Description

against a SHACL shapes graph.

A raw Self-Description is a valid

instance of a SHACL shapes

graph if it validates against the

SHACL shapes of the Self-

Description Schema in the sense

of “Validation of a data graph

against a shapes graph” in

Section 3.4 of the SHACL

specification.

Mandatory (Phase 1)

ST-V-V-03 The Federated Catalogue MUST be able to

validate a Self-Description, which is represented

as a Verifiable Presentation, against the Union

of all Self-Description Schemas (computed

according to SD-Sch-05).

(proper composition of functions

ST-V-V-01, SD-Sch-05, and ST-V-

V-02)

Mandatory (Phase 1)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 37

© 2021. This work is licensed under a CC BY 4.0 license

Table 19: Validating a Self-Description against the Schema

4.3.2.2 Trust Verification

ID Description Acceptance Criteria Priority

ST-V-T-01 The Federated Catalogue MUST provide a

function to validate the cryptographic

signatures of a Self-Description given as a JSON-

LD Verifiable Presentation.

“Workflow of details of

Cryptographic signature

validation” implemented

according to Figure 9

Mandatory (Phase 1)

Table 20: Semantics and Trust Verification Subsystem Trust Verification

4.3.3 Provided Internal Interfaces

SD-V-V-01 is exposed to the Self-Description and Schema Storage modules.

4.3.4 Consumed Internal Interfaces

Schema validation uses function SD-Sch-05, which computes the Union of all Self-Description Schemas.

4.3.5 Functional Requirements

ID Description Acceptance Criteria Priority

ST-F-01 The Federated Catalogue MUST be able to verify

proofs.

As specified by the Verifiable

Credentials Data Model [5].

Mandatory (Phase 1)

ST-F-02 The Federated Catalogue MUST be able to

retrieve the public key of a Participant.

We do not prescribe a specific

mechanism for publishing and

retrieving public keys but point

out the possibilities of using

keyservers, which associate with

a participant’s identity its public

key, or embedding a

Participant’s public key into its

Self-Description using a suitable

RDF property11.

Mandatory (Phase 1)

Table 21: Semantics and Trust Verification Subsystem Functional Requirements

4.4 Self-Description Graph and Query Subsystem

4.4.1 Description

The different Self-Descriptions of the Federated Catalogue need to be stored into one consistent database

to enable the connection of elements in the different Self-Descriptions. For instance, several Self-Descriptions

can point to a unique element, e.g., a certain certification level, which may be a starting point for a discovery

approach. A user of the Federated Catalogue might be interested to start at the certification level, and query

for applying services. This is only possible when all information is indexed in one entity. This entity is called

the Self-Description Graph and defined with the following requirements of Section 4.4.2.

11 See, e.g., cert:key from the Certificates ontology, a W3C Editor’s Draft. https://www.w3.org/ns/auth/cert#key

https://creativecommons.org/licenses/by/4.0/
https://www.w3.org/ns/auth/cert#key

Software Requirements Specification for FC.CCF Page 38

© 2021. This work is licensed under a CC BY 4.0 license

The SD Graph provides an efficient indexing of the loaded SDs. As such, this index is the backbone for the fast

and efficient answering of the incoming queries. It is in the responsibility of the Catalogue operator how this

index is constructed and maintained as long as the reliable answering of queries is ensured.

As for the query processing over the Self-Description Graph in the Catalogue, input openCypher queries are

in compliant with Self-Description Schema and the query results are serialized in JSON by default but can be

delivered also in further data formats, for instance XML, CSV, or HTML. Therefore, certain parameters must

be predefined in HTTP header when sending the query requests. Through queries, data consumers can

retrieve expected results and the query process is illustrated in Figure 10.

Figure 10: Workflow of retrieving results of queries

The Catalogue is able to receive openCypher queries through the remote API. The query endpoint is a well-

known path and is defined in the normative OpenAPI file in Appendix B. The query endpoint can reject query

requests that violate a set of transparent policies to protect the server stability. For instance, the query

endpoint may abort the execution of a query after a certain time interval or reject any unsafe (create, delete)

operation.

For valid queries, the query results must be returned in non-discriminating ranking, besides predefined filter

criteria set by Data Consumer. Furthermore, the Federated Catalogue must have a log of all queries, and their

content must be stored in an immutable way.

The Federated Catalogue may send queries also searching for SDs that contain one or more invalid or expired

signatures, if the incoming request explicitly indicates that it also asks for not completely trustworthy

metadata. As the Self-Description Storage stores the input of the Self-Description Graph persistently, which

enables a client to send requests for any version or all versions of a Self-Description. The SD Graph itself

provides two partitions. One that only contains the SDs, for which all signatures could be verified, and the

other also provides SDs that (partly) contain all non-revoked SDs.

4.4.2 Functions

The Self-Description Graph and Query Module provides several interactions and operations that are defined
in the following.

4.4.2.1 Functions of the Self-Description Graph

ID Description Acceptance Criteria Priority

SD-G-F-01 The SD Graph must be able to add active SDs.

The plain, unsigned content of the SDs is

obtained using S-V-V-01.

The client queries the Catalogue

for a new SD1. The Catalogue

returns no result. The client then

sends the SD1 to the Catalogue

and in a second request queries

for SD1 again. Now, the

Catalogue answers with the

complete content of SD1.

Mandatory (Phase 1)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 39

© 2021. This work is licensed under a CC BY 4.0 license

SD-G-F-02 The SD Graph must be able to update active SDs.

The plain, unsigned content of the SDs is

obtained using S-V-V-01.

A previously registered SD1 is

updated by its successor SD1’.

Then the client now queries for

the identifier of SD1 without

indicating that it is interested in

the old version, the Catalogue

responses with the content of

SD1’.

Mandatory (Phase 1)

SD-G-F-03 The SD Graph must be able to revoke SDs. The client that previously added

a certain SD executes a DELETE

operation towards the identifier

of the SD. A client requesting this

specific SD later on receives a

“not available” response.

Mandatory (Phase 1)

SD-G-F-04 The SD Graph must be readable for the user. The query ‘MATCH

(<node:node_ID>) RETURN

node.label’ with an existing node

ID returns a result.

Mandatory (Phase 1)

Table 22: Functions of the Self-Description Graph

4.4.2.2 Functions of the Query Module

ID Description Acceptance Criteria Priority

Q-F-01 The Query module must enable a user to find

offerings that match their requirements by

executing openCypher queries.

Execute an example openCypher

query and matched results can

be correctly returned.

Mandatory (Phase 1)

Q-F-02 The Query module must be able to return the

cryptographic proof of a SD, i.e., of the

Verifiable Presentation.

Verification steps must align with

the content in 4.3.1

Mandatory (Phase 1)

Q-F-03 The Query module must be able to serialize the

query results in JSON by default.

The request data format of the

query results as an IANA

mimetype. Default is

‘application/json’.

Mandatory (Phase 1)

Q-F-04 The Query module must be able to predefine

necessary parameters in HTTP header.

The parameters should be

aligned with xxx.

Mandatory (Phase 1)

Table 23:Functions of the Query Module

4.4.3 Provided Internal Interfaces

SD Graph and Query subsystem provides internal interfaces to the following modules in a Catalogue to

implement necessary actions:

● Provide an internal interface to Self-Description Storage to accept “active” SDs into SD Graph

● Provide an internal interface to Catalogue REST API to execute queries over the SD Graph

4.4.4 Consumed Internal Interfaces

SD Graph and Query subsystem consumes the following internal interfaces in a Catalogue to implement

necessary actions:

● Consume an internal interface of Catalogue REST API to return the query results

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 40

© 2021. This work is licensed under a CC BY 4.0 license

4.4.5 Functional Requirements

4.4.5.1 Self-Description Graph

ID Description Acceptance Criteria Priority

G-FR-01 SD Graph must set up backup. 100% data can be recovered

after a crash.

The backup functionality is

continuous.

Mandatory (Phase 1)

G-FR-02 SD Graph must accept the verified Self-

Descriptions.

A verified Self-Description needs

a valid certification and the

syntactic and semantic

correctness against a given

schema.

Mandatory (Phase 1)

G-FR-03 SD Graph must allow updates of a registered

Gaia-X Self-Description if the update request was

originally initiated by the participant of this Self-

Description, or by the Gaia-X entity controlling

the participant, if this relation has been made

visible to the Federated Catalogue.

A Self-Description S of a Gaia-X

Service A with version n can be

updated with a new Self-

Description S’ for A, where S is

different to S’. After the update,

the attributes of S’are shown to

a requesting client.

Mandatory (Phase 1)

G-FR-04 SD Graph must not present data of a removed or

passivated component after its removal has been

acknowledged to the requesting entity.

SDs in other life cycle statues

except “active” must not be

presented.

Mandatory (Phase 1)

G-FR-05 A client can query the latest version of a Self-

Description Graph.

The latest version number of

Self-Description Graph should be

presented in query.

Mandatory (Phase 1)

G-FR-06 The SD Graph needs to be recreated from the

stored SD files in periodic intervals and whenever

the used schema has been updated.

The SD Graph has a feature that

reimports all SDs from the SD

Storage and the manual run of

this feature results in a correct

SD Graph.

Mandatory (Phase 1)

G-FR-07 A Catalogue must allow the subscription of

clients to changes in the SD module.

The Catalogue offers an API for

clients to subscribe to specific

SDs using the hash identifier of

the targeted SD.

Optional (Phase 2)

G-FR-08 A Catalogue must announce (publish) creations

and changes to SDs to subscribed clients.

Client subscribes to one specific

SD, the SD is changed to SD’ and

the client receives an

appropriate message, containing

SD’.

Optional (Phase 2)

Table 24: Self-Description Graph Functional Requirements

4.4.5.2 Query Module

ID Description Acceptance Criteria Priority

Q-FR-01 The result of an openCypher query must contain

a reference to the originating SD for each

returned result item.

The “meta” element of the

“results” JSON object contains

the unique hash of the SD that

Mandatory (Phase 1)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 41

© 2021. This work is licensed under a CC BY 4.0 license

contained the original

information.

Q-FR-02 A Catalogue must not allow unsafe operation

through the query module.

Send openCypher queries with

the CREATE, REMOVE, DELETE,

and LOAD clauses. All must be

rejected.

Mandatory (Phase 1)

Q-FR-03 Executing queries needs to be in compliance with

Self-Description Schema.

SHACL validation against Self-

Description Schema must pass.

Mandatory (Phase 1)

Q-FR-04 Responses are also in compliance with Self-

Description Schema.

SHACL validation against Self-

Description Schema must pass.
Mandatory (Phase 1)

Q-FR-05 The result of an openCypher query must be

paginated.

The result of an openCypher

query uses pagination for

batches of 100 return items.

Mandatory (Phase 2)

Table 25: Functional Requirements Query Module

4.4.5.3 Query Parameters

ID Name Description Priority

Q-Par-01 query-language*

string

(header)

Available values: openCypher, application/sparql-

query, sparql*;

Default value:openCypher

Mandatory (Phase 1)

Q-Par-02 Self-Description-

schemaVersion

string

(header)

Self-Description Schema version, against which the

Message should be interpreted.

Mandatory (Phase 1)

Q-Par-03 federatedCatalogue-

issued

($date-time)

(header)

Date of issuing the request. Mandatory (Phase 1)

Q-Par-04 federatedCatalogue

-senderAgent

string($uri)

(header)

gax:Participant, which initiated the message. Optional (Phase 1)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 42

© 2021. This work is licensed under a CC BY 4.0 license

Q-Par-05 federatedCatalogue

-securityToken *

string

(header)

The Gaia-X DAT: Token representing Gaia-X security

claims, for instance that the sender supports a certain

security profile.

Optional (Phase 2)

Q-Par-06 federatedCatalogue

-authorizationToken

string

(header)

Authorization token as required by the Federated

Catalogue.

Optional(Phase 2)

Q-Par-07 federatedCatalogue

-transferContract

string($uri)

(header)

Contract which is (or will be) the legal basis of the data

transfer.

Mandatory (Phase 2)

Q-Par-08 Accept The request data format of the query results as an IANA

MIME type. Default is ‘application/json’.

Optional (Phase 1)

Table 26: Functional Requirements Query Parameters

4.4.6 Non-Functional Requirements

4.4.6.1 Self-Description Graph

ID Description Acceptance Criteria Priority

G-NF-01 The indexed graph must be capable of handling

at least one million defined nodes, ten million

properties, and ten million annotations at nodes

or properties.

Prepare a dataset with one

million defined nodes, ten

million properties, and ten

million annotations at nodes or

properties, load it into the graph

index and execute an

openCypher query that returns

the information at one explicit

node.

Mandatory (Phase 1)

G-NF-02 Self-Description Graph needs to be restarted in a

reasonable time limit after shutdown.

Self-Description Graph needs to

be restartable in less than 2

minutes after a shutdown.

Mandatory (Phase 1)

G-NF-03 Self-Description Graph must handle the creation,

update, and deletion of a single SD in less than 2

seconds.

Execute the creation, update,

and deletion of SD_i (0 <= i <= 9)

at least 100 times and measure

the maximum execution time for

each iteration. The criteria is

Mandatory (Phase 1)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 43

© 2021. This work is licensed under a CC BY 4.0 license

fulfilled if MaxExecutionTime <=

2 sec.

Table 27: Self-Description Graph Non-Functional Requirements

4.4.6.2 Query Module

ID Description Acceptance Criteria Priority

Q-NF-01 The query functionality must be able to handle

100 single read events in one second. An atomic

activity is an operation that targets only one

entity of the graph.

Execute the template ‘MATCH

(<node:node_i>) RETURN

node.label’ for 0 <= i <= 9 at least

100 times and measure the

maximum response time for

each iteration. The criteria is

fulfilled if MaxResponesTime <=

1 sec.

Mandatory (Phase 2)

Q-NF-02 The query functionality must be able to handle an

average of 20 query requests per second.

Execute the template ‘MATCH

(<node:node_i>) RETURN

node.label’ for 0 <= i <= 19 at

least 100 times and measure the

average response time for each

iteration directly at the

Catalogue API, after the query

message has reached the

Catalogue and before it is sent to

the client. The criteria is fulfilled

if AverageProcessingTime <= 1

sec.

Mandatory (Phase 1)

Q-NF-03 A Catalogue must abort the query execution after

5 seconds and announce the timeout in the

response message to the client.

Execute a query that takes longer

than 5 seconds and check

whether the execution is

aborted after 5 seconds.

Mandatory (Phase 1)

Q-NF-04 There must be a limit of accuracy of returned

results.

The accuracy of returned results

is higher than 99%.

Mandatory (Phase 1)

Table 28: Non-Functional Requirements Query Module

4.5 Catalogue REST API Subsystem

4.5.1 Description

A Catalogue instance must provide a public REST API to manage the Objects within the Catalogue. There are

two ways to use the REST API:

 a) using it as an anonymous visitor or

 b) using it as a registered user.

As a visitor only reading actions are allowed. The permissions of a registered user depend on his assigned

roles. For the access rights of the provided roles have a look in the Role Activity Matrix in Section 2.2.

The REST API must be documented in a well-structured format e.g., OpenAPI 3.0 standard.

The entire REST API must support TLS encryption with at least version 1.3.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 44

© 2021. This work is licensed under a CC BY 4.0 license

A Catalogue responds in defined manners. The API uses standard HTTP status codes and, whenever

necessary, explains the result of the operation in English terms. Support for additional languages is optional.

The Federated Catalogue may require incoming clients to prove their identity. A Federated Catalogue may

reject access to anonymous or wrongly identified clients. The rejection will be announced through an

appropriate HTTP response code and error message.

Authentication and authorization of a request are enabled by Federated Catalog API. Requests to the

Federated Catalogue API must be authorized using the username and access token of a valid user in the

Catalogue. An authorization must be presented in a request header, otherwise, the server of the Catalogue

must reply with an error indicating that no authentication header provided. When an incorrect

authentication is supplied, an error message expressing invalid username and password must be replied.

An incomplete example REST API could be found in the Appendix B. It is based on OpenAPI 3.0 and could be

well formatted with some tools for instance with swagger.io.

4.5.2 Functions

The following subchapters describe the activities which can be triggered by the REST API. The activities are

listed in the tables below. An activity performs an action on an Object. Following Objects are captured in the

Catalogue:

- Participants

- Principals / Users

- Self-Description

- Query

- Schema Management

- Roles

Each API Call has an operation identifier which is used in the REST API specification. If an activity leads to an

API call, then the affiliated operation id is mentioned in the description column.

Each activity only can be performed by a user with the appropriate roles. Otherwise, the user gets an error

message with an appropriate HTTP error code and the API call has no further impact on the Catalogue.

4.5.2.1 Participants

Participants of Gaia-X must be able to register themselves in a Federated Catalogue via the API. They may

use platforms like the GXFS portal (a separate lot in the GXFS tender) . However, the REST API must provide

participant management operations.

A participant is also described by a Self-Description. The structure of participants, the relationships to users

and roles are described in Section 2.4.

ID Description Acceptance Criteria Priority

Act-Pa-00 Add Participant - initial registration of an existing

Participant to the Catalogue instance.

API Operation ID: addParticipant

When a participant is successfully

registered then the SD of the

participant could be found in the

Catalogue.

Mandatory (Phase 1)

https://creativecommons.org/licenses/by/4.0/
https://editor.swagger.io/

Software Requirements Specification for FC.CCF Page 45

© 2021. This work is licensed under a CC BY 4.0 license

Act-Pa-01 Read Participant - Get Self-Description of the

requested participant.

API Operation ID: getParticipant, listParticipants

If a participant is registered in the

Catalogue, then its Self-Description

will be replied.

Mandatory (Phase 1)

Act-Pa-02 Update Participant - Update the Self-Description of

the requested participant.

API Operation ID: updateParticipant

After a successful update of the Self-

Description of a participant, the old

Self-Description is replaced by the

updated one. Only for standalone

deployment of a Catalogue without an

existing IAM system.

Mandatory (Phase 1)

Act-Pa-03 Delete Participant - Delete a participant from

Catalogue. Deletion will not be done immediately

e.g., latest after 30 days due to synchronization of

SD storage and GraphDB.

API Operation ID: deleteParticipant

The Self-Descriptions and users of the

deleted participant are no longer

stored in the Catalogue after the

synchronization time.

Mandatory (Phase 1)

Act-Pa-04 Get all users of the participant.

API Operation ID: getUsersOfParticipant

If a participant has 1 to n users, the

Self-Descriptions of its 1 to n users will

be replied.

Mandatory (Phase 1)

Table 29: Catalogue REST API Subsystem Functions Participants

4.5.2.2 Principals / Users

For standalone deployment of a Catalogue without an existing IAM system the Federated Catalogue API must

provide user management operations. Users with the appropriate roles need the possibility to create, read,

update, and delete users in the Federated Catalogue.

A user is also described by a Self-Description and signed by the associated participant. The structure of users,

the relationships to participants and roles are described in Section 2.4.

ID Description Acceptance Criteria Priority

Act-Us-00 Create User - Add a user which belongs to a

participant. The registration needs a valid

Verifiable Credential signed by the participant.

API Operation ID: addUser

After a successful adding of a user to a

participant, the user can log in to the

Catalogue with his credentials. The

permissions of the user depend on his

assigned roles.

Mandatory (Phase 1)

Act-Us-01 Read User - Get properties of requested user.

API Operation ID: getUser, listUsers

If a user is registered in the Catalogue,

then its Self-Description will be replied.

Mandatory (Phase 1)

Act-Us-02 Update User - Update properties of requested user.

API Operation ID: updateUser

After a successful update of the Self-

Description of a user, the old Self-

Description is replaced by the updated

one.

Mandatory (Phase 1)

Act-Us-03 Delete User - Delete a user from the participant in

the Catalogue.

API Operation ID: deleteUser

The user is deleted from the Catalogue.

He can no longer log in to the

Catalogue. He has no longer

permissions to perform any activity in

the Catalogue.

Mandatory (Phase 1)

Table 30: Catalogue REST API Subsystem Functions Principals/ Users

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 46

© 2021. This work is licensed under a CC BY 4.0 license

4.5.2.3 Self-Description

The Self-Description documents contain the metadata about a service offering. Their serializations must be

in JSON-LD and validate against the Gaia-X Self-Description Schema. These self-description serializations can

be registered at a Federated Catalog. In addition, the related Provider must be able to update already

registered Self-Descriptions whenever a change in the underlying offer appeared.

Sending a Self-Description using the Federated Catalogue API

A Provider can send Self-Descriptions about its offers to a Federated Catalogue, either via the remote API or

using the website. The Federated Catalogue stores and indexes the Self-Description and makes it available to

other Gaia-X Participants to query for them.

Synchronizing a new Self-Description from a remote Federated Catalogue

Whenever an interconnected Federated Catalogue receives a new or updated Self-Description, it will

synchronize its new state with the other Federated Catalogue instances. This happens automatically and

independently of the content of the Self-Description, its represented offering, or the registering Participant.

A Catalogue might as well reject Self-Descriptions with problematic signatures. In that case, it must announce

at least one of the found errors to the registering Participant.

Sending delete request using the Federated Catalogue API

A registered Self-Description can be deleted by an authorized Participant, usually the one who created it or

a Participant that is explicitly authorized to do so. In addition, dedicated Catalogue administrators have the

permission to delete corrupted or outdated Self-Descriptions. Furthermore, they are allowed to delete any

Self-Description that puts the proper functionality of the Catalogue at risk, for instance by their size.

A Deletion event results in the Self-Description in question not being listed anymore in the regular search

queries. The Catalogue may however still store a local copy for legal issues or to provide backup capabilities.

Response Definition

A delete request must be responded in a corresponding HTTP status code via Federated Catalogue API.

Whenever necessary, an explanation message of the refused request may also be replied in English terms.

Support for additional languages is optional.

Sending access request using the Federated Catalogue API

Self-Descriptions can be accessed jointly. Through references between Self-Descriptions a federated query

can retrieve all related Self-Descriptions with all signatures in this Catalogue.

The Catalogue must reply to an access request to many Self-Descriptions in a corresponding HTTP status code

via Federated Catalogue API. In case an access request being rejected, or an access request to a certain Self-

Description being rejected, a message may return to explain the rejection reason in English terms. Support

for additional languages is optional.

Checking the Trust-Level/Signature of the Self-Description/Authorization

Before a Deletion request is accepted, the Catalogue must verify the authorization of the deleting Participant.

If the Catalogue comes to the conclusion that the Participant is not authorized to delete the Self-Description,

it must respond with a proper error message.

Each Self-Description can be accessed individually. If a Catalogue has the Self-Description in its storage and

it has not been deleted before, it must return it together with all signatures. A client may however also

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 47

© 2021. This work is licensed under a CC BY 4.0 license

indicate that it is also interested in Self-Description with a state different to Active. In that case, the Catalogue

may or may not return the Self-Description.

In case a Self-Description has not been registered at a Catalogue, the Catalogue acts if it is not existing. A

client therefore must not derive the non-existence of a Service Offering from an empty answer from one

Catalogue. It is not in the responsibility of the Federated Catalogue to be aware of every existing Self-

Description.

Synchronized Catalogues must announce the deletion of a Self-Description to each other. A Catalogue

informed in such a way must behave as if the Participant had deleted the Self-Description directly at itself.

The Catalogue must validate Self-Descriptions syntactically and, to the extent covered by the Self-Description

Schema, semantically. A non-compliant Self-Description must be rejected, and the Catalogue must reject it.

Furthermore, the Catalogue must announce the rejection to the registering Participant, either via a proper

response code (API) or error message on the website. A rejected Self-Description must not be added to the

storage modules.

Gaia-X Self-Descriptions contain signatures of the creating entities. A Catalogue evaluates all signatures and

indicates found issues to the registering Participant. Still, a Catalogue might decide to store a Self-Description

where one or several signatures could not be verified. Such Self-Descriptions must be labeled as such as its

trust level is reduced.

ID Description Acceptance Criteria Priority

Act-SD-00 Add Self-Description - Add a Self-Description to the

Catalogue.

API Operation ID: addSelfDescription

When a SD is successfully added then

the SD could be found in the

Catalogue.

Mandatory (Phase 1)

Act-SD-01 Get Self-Description - getting the raw JSON-LD.

API Operation ID: readSelfDescriptionByHash,

readSelfDescriptions

If a Self-Description is publicly

available in the Catalogue, then the

Self-Description will be replied.

Anybody could get every public SD he

wants. The Catalogue can limit the

rate to check for abuse.

Mandatory (Phase 1)

Act-SD-02 Update Self-Description - Update parts of a Self-

Description.

API Operation ID: updateSelfDescription

After a successful update of the Self-

Description, the old Self-Description

is marked as deprecated.

Mandatory (Phase 1)

Act-SD-03 Revoke Self-Description - Set the life cycle state of

a Self-Description to revoked.

API Operation ID: updateSelfDescription

The revoked Self-Description has the

life cycle state “Revoked”.

Mandatory (Phase 1)

Act-SD-04 Verify trust of a SD - Trust mechanism. Check the

signatures of a SD with the information available in

the Catalogue.

API Operation ID: verifyTrust

If a Self-Description has invalid

signatures, then this action will

return a fail status code.

If a Self-Description has valid

signatures, then this action will

return a success status code.

Mandatory (Phase 1)

Act-SD-05 Verify syntactic correctness of a SD - Check a SD to

syntactic correctness

If a Self-Description does not comply

with the current schema version of

Self-Description, the action will fail.

Mandatory (Phase 1)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 48

© 2021. This work is licensed under a CC BY 4.0 license

API Operation ID: verifySyntax If a Self-Description complies with the

current schema version of Self-

Description, the action will succeed.

The verification is publicly available

and can be used for debugging Self-

Description. Therefore, responses

with meaningful content will be

replied.

Table 31: Catalogue REST API Subsystem Functions Checking the Trust-Level/Signature of the Self-Description/Authorization

4.5.2.4 Query

A Gaia-X Catalogue must support the search for suitable Gaia-X Services using a HTTP API. The queries are

stated in openCypher and serialized in the request with additional possible filter and search parameters.

The Federated Catalogue API allows the users to execute a series of openCypher queries to access Self-

Descriptions. Against an HTTP API endpoint, the HTTP request with the openCypher query in the request

body will be executed over the Self-Description Graph in the Catalogue. In the scenario of sending a query

request, only the HTTP POST method is supported.

A successful response of a query request must include the corresponding HTTP response code and a

reference to the originating SD for each returned result item.

For details to the queries see Section 4.4.

ID Description Acceptance Criteria Priority

Act-Qu-04 Execute a Query - Sending Query to the Catalogue

which should be executed to the Graph Database.

API Operation ID: query

A valid query will get a valid and

appropriate result.

Mandatory (Phase 1)

Table 32: Catalogue REST API Subsystem Functions Query

4.5.2.5 Schema Management

A Gaia-X Catalogue must provide the latest Self-Description schemas. This enables creating syntactic correct

Self-Descriptions.

The structure of a schema is described in Section 4.2.

There are different resources / types which can be described by Self-Descriptions, e.g., Participants or

DataAssets. Each type has its own schema, which must be available through the Federated Catalogue API.

These schemas are stored in a graph-based structure and enable reuse of partial schemas whenever possible.

Responding to a Self-Description schema request includes gathering all properties relevant for the requested

Self-Description type from that graph and aggregating these into a (possibly hierarchical) resulting schema.

For a given class C, this includes but is not limited to,

● from the ontology,

○ the immediate super classes,

○ the properties P, and

● from the shapes,

○ those that have C as their target class, and

○ those that have one property out of P in their path.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 49

© 2021. This work is licensed under a CC BY 4.0 license

ID Description Acceptance Criteria Priority

Act-Sc-01 Get the latest schemas of all types.

API Operation ID: getLatestSchemas

For an API call, the Catalogue returns for

each Self-Description type a valid

assembled Self-Description schema that

includes the latest state of all relevant

properties belonging to that schema.

Mandatory (Phase 1)

Act-Sc-02 Get the latest schema of a specific type

API Operation ID: getLatestSchemasOfType

Given an arbitrary type via an API call, the

Catalogue returns a valid assembled Self-

Description schema that includes the

latest state of all relevant properties

belonging to that schema.

Mandatory (Phase 1)

Table 33: Catalogue REST API Subsystem Functions Schema Management

4.5.2.6 Roles

For standalone deployment of a Catalogue without an existing IAM system, the Federated Catalogue API

must provide role management operations. Users with the appropriate roles need the possibility to assign

and revoke roles to other users.

The structure of roles, the provided set of roles and their definitions are described in Section 2.4. The access

rights of the roles can be found in the table in Section 2.2.

ID Description Acceptance Criteria Priority

Act-Ro-00 Assign / Revoke external roles to a user

API Operation ID: updateUserRoles

After assigning an external role A to a user,

the user has the permissions of role A.

After revoking an external role B from a user,

the user has no longer permission of role B.

Mandatory (Phase 1)

Act-Ro-01 Assign / Revoke internal roles to a user

API Operation ID: updateUserRoles

After assigning an internal role A to a user,

the user has the permissions of role A.

After revoking an internal role B from a user,

the user has no longer permission of role B.

Mandatory (Phase 1)

Act-Ro-02 Get roles of a user

API Operation ID: getUserRoles

If roles A and B are assigned to a user, then a

list containing the ids of role A and B is

replied.

Mandatory (Phase 1)

Act-Ro-03 Get list of all possible roles

API Operation ID: getAllRoles

All provided roles of the Catalogue will be

replied. At least the default roles defined in

section 2.4.

Mandatory (Phase 1)

Table 34: Catalogue REST API Subsystem Functions Roles

4.5.3 Provided Internal Interfaces

The Federated Catalogue API does not provide any internal interfaces.

4.5.4 Consumed Internal Interfaces

The Federated Catalogue API provides a public interface to perform actions on Objects in the Federated

Catalogue by users. To delegate the request to the right place, the API consumes the provided internal

interfaces of each Object which is captured by the API.

In particular, following internal interfaces are consumed by the REST API:

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 50

© 2021. This work is licensed under a CC BY 4.0 license

- User Management see Section 4.6 (for Objects: Participants, Principals / Users, Roles)

- SD Storage see Section 4.1 (for Object: Self-Description)

- SD Graph see Section 4.4 (for Object: Query)

- Schema Management see Section 4.2 (for Object: Schema)

4.5.5 Functional Requirements

ID Description Acceptance Criteria Priority

Rest-F-01 The Catalogue MUST accept syntactically

correct openCypher queries in the body of a

HTTP POST request on the query endpoint.

Send a MATCH clause and verify

whether it is returning content.

Mandatory (Phase 1)

Rest-F-02 The query endpoint MUST return a JSON object

in the response body by default.

 Mandatory (Phase 1)

Rest-F-03 The query endpoint SHOULD return a different

data format, for instance XML, CSV, or HTML, if

explicitly asked for by the client through

Content Negotiation as defined by RFC 7231.

Execute query requests with the

Accept header set to

‘application/xml’, ‘text/csv’, and

‘text/html’.

Optional (Phase 2)

Rest-F-04 The query endpoint SHOULD reject non-

authorized clients or clients with incorrect

identity claims.

Execute query requests with an

arbitrary identity claim.

Optional (Phase 2)

Rest-F-05 The results of a query MUST NOT discriminate

between different SDs or Providers. An ordering

must be based on technical (for instance

alphabetical or chronological sorting) or trust-

related aspects (verified SDs first)

An equivalent SD is presented in

the same way independent of

the Participant that registered it.

Mandatory (Phase 1)

Rest-F-06 The results of a query MUST be delivered in

batches of 100 result items by default. A client

can use limit and offset parameters to request

the distinct batches.

 Mandatory (Phase 1)

Rest-F-07 The API MUST use standard HTTP status codes

and, whenever necessary, explains the result of

the operation in English terms. Support for

additional languages is optional.

 Mandatory (Phase 1)

Rest-F-08 There MUST NOT be different users with the

same username under the same participant.

Creating a user with an already

existing username under the

same participant will be

rejected.

Mandatory (Phase 1)

Rest-F-09 A Participant MUST NOT be registered more

than once.

If a Participant wants to register

which is already registered in

Catalogue, it will be rejected.

Mandatory (Phase 1)

Rest-F-10 The signatures of a Participant MUST be valid

during registration.

A Participant with an invalid or

outdated signature cannot

register.

Mandatory (Phase 1)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 51

© 2021. This work is licensed under a CC BY 4.0 license

Rest-F-11 The Catalogue MUST NOT consider invalid or

manually added role ids in the access token in

the request header.

Invalid role ids in the access

token are ignored.

Mandatory (Phase 1)

Rest-F-12 A user MUST NOT be assigned to one role more

than once.

If a user is already assigned to a

Role A and a new request wants

to assign Role A again to the

user, the request is rejected and

has no further impact.

Mandatory (Phase 1)

Rest-F-13 Self-Descriptions which are uploaded to the

Catalogue MUST match the latest schema.

Operations to upload or to adapt

Self-Descriptions which leads to

or contains invalid or outdated

schemas are rejected.

Mandatory (Phase 1)

Rest-F-14 Self-Descriptions which are uploaded to the

Catalogue MUST have valid and trustworthy

signatures.

Operations to upload or to adapt

Self-Descriptions with invalid

and untrustworthy signatures

are rejected.

Mandatory (Phase 1)

Rest-F-15 Query requests MUST have a valid structure. Invalid queries will be rejected. Mandatory (Phase 1)

Rest-F-16 Query requests with malicious content MUST

be rejected.

A query which tries unauthorized

to manipulate the Self-

Description Graph, will be

rejected.

Mandatory (Phase 1)

Table 35: Catalogue REST API Subsystem Functional Requirements

4.5.6 Non-Functional Requirements

ID Description Acceptance Criteria Priority

Rest-NF-01 The Catalogue MUST respond in less than 10

seconds, either with a successful response, a

timeout, or an error message.

 Mandatory (Phase 1)

Rest-NF-02 The Catalogue MUST block clients after a

maximum of 10 incorrect authentication

attempts or requests with incorrect identity

claims.

Execute ten incorrect

authentication attempts. The

eleventh attempt must not

return a response message.

Optional (Phase 2)

Rest-NF-03 A Catalogue SHOULD store blocked users in a

blacklist.

 Optional (Phase 2)

Rest-NF-04 The Catalogue SHOULD reduce the rate limit of

a user when he sends more than 10 requests

per second to avoid denial of services.

 Optional (Phase 2)

Rest-NF-05 The full REST API MUST be documented in a

well-structured format e.g., OpenAPI 3.0

standard.

Followed best practices and tool

support.

Mandatory (Phase 1)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 52

© 2021. This work is licensed under a CC BY 4.0 license

Rest-NF-06 The entire REST API MUST support TLS

encryption with at least version 1.3 as defined

by RFC 8446.

 Mandatory (Phase 1)

Rest-NF-07 Each API Call MUST have an operation identifier. Mandatory (Phase 1)

Table 36: Catalogue REST API Subsystem Non-Functional Requirements

Appendix A: Self-Description Core Ontology

The following non-normative listing shows the Self-Description Core Ontology, represented as an RDF graph

in Turtle serialization.

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix schema: <http://schema.org/> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix cc: <http://creativecommons.org/ns#> .

@prefix voaf: <http://purl.org/vocommons/voaf#> .

@prefix gax: <http://w3id.org/gaia-x/core#> .

gax: a voaf:Vocabulary, owl:Ontology ;

 rdfs:label "Gaia-X Ontology"@en ;

 cc:license <http://www.apache.org/licenses/LICENSE-2.0> ;

 dct:creator "Gaia-X Open Work Package 'Self-Description'" ;

 dct:created "2020-07-06T12:00:00+01:00"^^xsd:dateTimeStamp ;

 dct:modified "2020-04-13T12:00:00+01:00"^^xsd:dateTimeStamp ;

 owl:versionInfo "0.1" ;

 vann:preferredNamespaceUri "http://w3id.org/gaia-x/core#" ;

 vann:preferredNamespacePrefix "gax" ;

 void:vocabulary vann:, void:, voaf:, dct:, foaf: .

#############

Core Classes from the Conceptual Model

#############

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 53

© 2021. This work is licensed under a CC BY 4.0 license

gax:Participant

 a owl:Class ;

 rdfs:label "Participant"@en ;

 rdfs:comment "A Participant is a natural or legal person who is

identified, authorized and has a Gaia-X Self-Description."@en ;

.

gax:Provider

 a owl:Class ;

 rdfs:subClassOf gax:Participant ;

 rdfs:label "Provider"@en ;

 rdfs:comment "A Participant who provides Resources in the Gaia-X

ecosystem."@en ;

 rdfs:subClassOf [a owl:Restriction ;

 owl:onProperty gax:provides ;

 owl:minCardinality 1 ;

] ;

 rdfs:subClassOf [a owl:Restriction ;

 owl:onProperty gax:providesResourcesFrom ;

 owl:minCardinality 1 ;

] ;

 rdfs:subClassOf [a owl:Restriction ;

 owl:onProperty gax:owns ;

 owl:minCardinality 1 ;

] ;

 rdfs:subClassOf [a owl:Restriction ;

 owl:onProperty gax:operates ;

 owl:minCardinality 1 ;

] ;

.

gax:Federator

 a owl:Class ;

 rdfs:subClassOf gax:Participant ;

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 54

© 2021. This work is licensed under a CC BY 4.0 license

 rdfs:label "Federator"@en ;

 rdfs:comment "A Federator is a Participant who enables a Federation

Service."@en ;

 rdfs:subClassOf [a owl:Restriction ;

 owl:onProperty gax:provides ;

 owl:minCardinality 1 ;

] ;

.

gax:Consumer

 a owl:Class ;

 rdfs:subClassOf gax:Participant ;

 rdfs:label "Consumer"@en ;

 rdfs:comment "A Participant who consumes and leverages Service Instance

in the Gaia-X ecosystem to enable digital offerings for End Users."@en ;

 rdfs:subClassOf [a owl:Restriction ;

 owl:onProperty gax:consumes ;

 owl:minCardinality 1 ;

] ;

.

gax:FederationService

 a owl:Class ;

 rdfs:label "Federation Service"@en ;

 rdfs:comment "Federation Services provide the foundation for the

operational implementation of the Gaia-X model. An Open-Source community-

based reference implementation of them will be provided by the Federation

Services projects under specification and oversight by Gaia-X AISBL."@en

;

 rdfs:subClassOf [a owl:Restriction ;

 owl:onProperty gax:definesSchemas ;

 owl:minCardinality 1 ;

] ;

.

gax:ServiceOffering

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 55

© 2021. This work is licensed under a CC BY 4.0 license

 a owl:Class ;

 rdfs:label "Service Offering"@en ;

 rdfs:comment "A Service Offering is a set of Assets and Resources,

which a Provider bundles into an offering."@en .

gax:Resource

 a owl:Class ;

 rdfs:label "Resource"@en ;

 rdfs:comment "Behavior element used by the Service Instance via the

Service Offering composition."@en .

gax:Asset

 a owl:Class ;

 rdfs:label "Asset"@en ;

 rdfs:comment "Static structural element, used to compose the Service

Offering."@en .

#############

Core Classes from the Conceptual Model (without own SDs)

#############

gax:AssetOwner

 a owl:Class ;

 rdfs:label "Asset Owner"@en ;

 rdfs:comment "A natural or legal person who is in legal possession of

the Asset."@en ;

 rdfs:subClassOf [a owl:Restriction ;

 owl:onProperty gax:owns ;

 owl:minCardinality 1 ;

] ;

 rdfs:subClassOf [a owl:Restriction ;

 owl:onProperty gax:legallyEnablesResourceProvision ;

 owl:minCardinality 1 ;

] ;

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 56

© 2021. This work is licensed under a CC BY 4.0 license

.

gax:EndUser

 a owl:Class ;

 rdfs:label "End User"@en ;

 rdfs:comment "A natural person not being Principal, using digital

offering from a Consumer. End-Users own an identity within the Consumer

context."@en .

gax:ServiceInstance

 a owl:Class ;

 rdfs:label "Service Instance"@en ;

 rdfs:comment "Realisation by the Provider of the Service Offering."@en

.

gax:Contract

 a owl:Class ;

 rdfs:label "Contract"@en ;

 rdfs:comment "Contract means the binding legal agreement describing a

Service Instance and includes all rights and obligations."@en .

#############

Extended Classes from the Conceptual Model

#############

gax:DataAsset

 a owl:Class ;

 rdfs:subClassOf gax:Asset ;

 rdfs:label "Data Asset"@en ;

 rdfs:comment "Data Asset is a subclass of Asset and consist of data in

any form and necessary information for data sharing."@en .

gax:Interconnection

 a owl:Class ;

 rdfs:subClassOf gax:Asset ;

 rdfs:label "Interconnection"@en ;

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 57

© 2021. This work is licensed under a CC BY 4.0 license

 rdfs:comment "Interconnection is a dedicated category of Assets. An

Interconnection is a connection between two or multiple nodes. These nodes

are usually located at different locations and owned by different

stakeholders, such as customers and/or providers. The Interconnection

between the nodes can be seen as a path, which exhibits special

characteristics, such as latency and bandwidth guarantees, that go beyond

the characteristics of a path over the public Internet."@en .

gax:Node

 a owl:Class ;

 rdfs:subClassOf gax:Asset ;

 rdfs:label "Node"@en ;

 rdfs:comment "A Node is a sub class of Assets. A Node represents a

computational or physical entity that hosts, manipulates, or interacts

with other computational or physical resources."@en .

gax:SoftwareAsset

 a owl:Class ;

 rdfs:subClassOf gax:Asset ;

 rdfs:label "Software Asset"@en ;

 rdfs:comment "Software Assets are a form of Assets that consist of

non-physical functions."@en .

#############

Properties

#############

gax:providesResourcesFrom

 a owl:ObjectProperty ;

 rdfs:label "provides resources from"@en ;

 rdfs:domain gax:Provider ;

 rdfs:range gax:AssetOwner .

gax:legallyEnablesResourceProvision

 a owl:ObjectProperty ;

 rdfs:label "legally enables resource provision"@en ;

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 58

© 2021. This work is licensed under a CC BY 4.0 license

 rdfs:domain gax:AssetOwner ;

 rdfs:range gax:Provider .

gax:owns

 a owl:ObjectProperty ;

 rdfs:label "owns"@en ;

 rdfs:domain [owl:unionOf (gax:Provider gax:AssetOwner)] ;

 rdfs:range gax:Asset .

gax:operates

 a owl:ObjectProperty ;

 rdfs:label "operates"@en ;

 rdfs:domain gax:Provider ;

 rdfs:range gax:Resource .

gax:provides

 a owl:ObjectProperty ;

 rdfs:label "provides"@en ;

 rdfs:domain [owl:unionOf (gax:Provider gax:Federator)] ;

 rdfs:range [owl:unionOf (gax:ServiceInstance gax:FederationService)]

.

gax:definesSchemas

 a owl:ObjectProperty ;

 rdfs:label "defines schemas"@en ;

 rdfs:domain gax:FederationService ;

 rdfs:range gax:ServiceOffering .

gax:usesAndConforms

 a owl:ObjectProperty ;

 rdfs:label "uses and conforms"@en ;

 rdfs:domain gax:ServiceOffering ;

 rdfs:range gax:FederationService .

gax:composes

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 59

© 2021. This work is licensed under a CC BY 4.0 license

 a owl:ObjectProperty ;

 rdfs:label "composes"@en ;

 rdfs:domain gax:ServiceOffering ;

 rdfs:range [owl:unionOf (gax:Resource gax:Asset)] .

gax:realizesBy

 a owl:ObjectProperty ;

 rdfs:label "realized by"@en ;

 rdfs:domain gax:ServiceOffering ;

 rdfs:range gax:ServiceInstance .

gax:offersTo

 a owl:ObjectProperty ;

 rdfs:label "offers to"@en ;

 rdfs:domain gax:Consumer ;

 rdfs:range gax:EndUser .

gax:usesDigitalOfferingBy

 a owl:ObjectProperty ;

 rdfs:label "uses digital offering by"@en ;

 rdfs:domain gax:EndUser ;

 rdfs:range gax:Consumer .

gax:consumes

 a owl:ObjectProperty ;

 rdfs:label "consumes"@en ;

 rdfs:domain gax:Consumer ;

 rdfs:range gax:ServiceInstance .

gax:uses

 a owl:ObjectProperty ;

 rdfs:label "uses"@en ;

 rdfs:domain gax:EndUser ;

 rdfs:range gax:ServiceInstance .

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 60

© 2021. This work is licensed under a CC BY 4.0 license

gax:reliesOn

 a owl:ObjectProperty ;

 rdfs:label "relies on"@en ;

 rdfs:domain gax:ServiceInstance ;

 rdfs:range gax:Contract .

gax:managedBy

 a owl:ObjectProperty ;

 rdfs:label "managed by"@en ;

 rdfs:comment "Declares a Gaia-X participant that manages /

maintains this asset."@en ;

 skos:note "Should be used to link Gaia-X asset to their

respective Participant, as they cannot exist without one."@en ;

 rdfs:domain gax:Asset ;

 rdfs:range gax:Participant .

gax:providedBy

 a owl:ObjectProperty ;

 rdfs:label "provided by"@en ;

 rdfs:domain [owl:unionOf (gax:Node gax:Service)] ;

 rdfs:range gax:Provider .

gax:ownedBy

 a owl:ObjectProperty ;

 rdfs:label "owned by"@en ;

 rdfs:range gax:Participant .

#################

Meta Ontology #

#################

gax:MustCriterion

 rdfs:subClassOf rdf:Property ;

 rdfs:label "must criterion"@en ;

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 61

© 2021. This work is licensed under a CC BY 4.0 license

 rdfs:comment "a property for which a value must be provided"@en ;

.

gax:OverridableCriterion

 rdfs:subClassOf rdf:Property ;

 rdfs:label "overridable criterion"@en ;

 rdfs:comment "a property whose value can be inherited, but may be

overridden"@en ;

.

gax:HiddenCriterion

 rdfs:subClassOf rdf:Property ;

 rdfs:label "hidden criterion"@en ;

 rdfs:comment "a property that should be hidden when generating

visualizations of an entity"@en ;

.

Appendix B: REST API
Origin: https://gitlab.com/gaia-x/gaia-x-technical-committee/federation-

services/wp2/catalogue-specification-artefacts/-/blob/master/rest-api.yaml

openapi: 3.0.1

info:

 title: Gaia-X Catalogue

 description: 'This is the REST API of the Gaia-X catalogue.'

 license:

 name: Apache 2.0

 url: http://www.apache.org/licenses/LICENSE-2.0.html

 version: 1.0.0

servers:

- url: https://api.gaiax.io/v1

Authentication by OAuth2 (no scoping at this point)

components:

 securitySchemes:

 oAuthNoScopes:

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 62

© 2021. This work is licensed under a CC BY 4.0 license

 type: oauth2

 description: This API uses OAuth 2 with the implicit grant flow. [More

info](https://api.example.com/docs/auth)

 flows:

 implicit:

 authorizationUrl: https://api.gaiax.io/oauth2/authorize

 scopes:

 read_self-descriptions: read the Self-Descriptions

 write_self-descriptions: Add, delete, and update a Self-Description

 query: Send queries

 responses:

 NotFound:

 description: The specified resource was not found

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Error'

 Unauthorized:

 description: Unauthorized

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Error'

 ServerError:

 description: May contain hints how to solve the error or indicate what went

wrong at the server. Must not outline any information about the internal structure

of the server.

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Error'

 ClientError:

 description: May contain hints how to solve the error or indicate what was

wrong in the request.

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Error'

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 63

© 2021. This work is licensed under a CC BY 4.0 license

 schemas:

 # Schema for error response body

 Error:

 type: object

 properties:

 code:

 type: string

 message:

 type: string

 required:

 - code

 - message

 Statements:

 type: object

 properties:

 statements:

 type: array

 items:

 $ref: '#/components/schemas/Statement'

 maxItems: 1 # only one statement can be sent for now. The array is for

future

 # extensions

 Statement:

 type: object

 properties:

 statement:

 type: string

 example: 'Match (m:Movie) where m.released > 2000 RETURN m'

 parameters:

 $ref: '#/components/schemas/Parameters'

 required:

 - statement

 Parameters:

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 64

© 2021. This work is licensed under a CC BY 4.0 license

 type: object

 properties:

 limit:

 type: string

 example: '10'

 offset:

 type: string

 example: '5'

 Results:

 type: object

 properties:

 results:

 type: array

 items:

 $ref: '#/components/schemas/Result'

 maxItems: 1

 required:

 - results

 Result:

 type: object

 properties:

 columns:

 type: array

 example: ["column name 1", "column name 2"]

 items:

 type: string

 example: 'column names'

 data:

 type: array

 items:

 $ref: '#/components/schemas/Data'

 required:

 - columns

 - data

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 65

© 2021. This work is licensed under a CC BY 4.0 license

 VerificationResult:

 type: object

 properties:

 verification-timestamp:

 type: string

 lifecycle-status:

 type: string # does the self-description have a lifecycle status in this

catalogue?

 issuer:

 type: object # contains the id of the issuers self-description if

available

 issued-date:

 type: string

 signatures:

 type: array

 items:

 type: object

 required:

 - verification-timestamp

 - lifecycle-status

 - issuer

 - issued-date

 - signatures

 Data:

 type: object

 properties:

 row:

 type: array

 example: ["value1", "value2"]

 items:

 type: string

 meta:

 type: array

 example: ["meta1", "meta2"]

 items:

 type: string

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 66

© 2021. This work is licensed under a CC BY 4.0 license

 required:

 - row

 - meta

 Participant:

 type: object

 properties:

 id:

 type: string

 description: Global ID of the participant

 name:

 type: string

 public-key:

 type: string

 self-description:

 type: string

 User:

 type: object

 properties:

 id:

 type: string

 description: Internal catalogue user id

 example: 'ExampleCompany-John-Doe'

 participantId:

 type: string

 description: Global ID of the associated participant

 example: 'ExampleCompany'

 username:

 type: string

 example: 'John Doe'

 email:

 type: string

 roleIds:

 type: array

 items:

 $ref: '#/components/schemas/Role'

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 67

© 2021. This work is licensed under a CC BY 4.0 license

 Role:

 type: object

 properties:

 id:

 type: string

 example: 'Ro-MU-CA'

 Session:

 type: object

 properties:

 userId:

 type: string

 creationDate:

 type: string

 status:

 type: string

 roleIds:

 type: array

 items:

 $ref: '#/components/schemas/Role'

 Self-Description:

 type: object

 properties:

 sd-hash:

 type: string

 status:

 type: integer

 issuer:

 type: string

 issue-date:

 type: string

 status-date:

 type: string

 description: The last time the status changed (for this Catalogue)

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 68

© 2021. This work is licensed under a CC BY 4.0 license

security:

 - oAuthNoScopes:

 - read_self-descriptions

 - write_self-descriptions

 - query

tags:

- name: discovery

 description: 'Announce the endpoints of this Catalogue.'

- name: self-descriptions

 description: 'Retrieving Self-Descriptions from the Catalogue. All Self-

Descriptions are JSON-LD files. They are referenced by their sha256 hash.

Catalogues synchronize by downloading changesets (lists of hashes) from known

other Catalogues and reading the full Self-Descriptions of entries that are unknown

to them.'

 externalDocs:

 description: Find out more

 url: http://gaiax.io

- name: sandbox

 description: 'Try changes to the JSON-LD Self-Descriptions against the catalogue

in a sandbox, i.e. the changes are not really applied. But the error messages

allow the debugging of Self-Descriptions wrt trust and validation of the content

on a syntactical and semantic level.'

 externalDocs:

 description: Find out more

 url: http://gaiax.io

- name: query

 description: 'Send graph queries to this Catalogue.'

- name: users

 description: User management for Catalogues not connected to an external IAM

system

- name: participants

 description: Management for registered participants in the catalogue

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 69

© 2021. This work is licensed under a CC BY 4.0 license

- name: schemas

 description: The format of the self-descriptions are defined by schemas in the

catalogue. Here you get information about the latest schema.

- name: roles

 description: Management for the permission roles in the catalogue

- name: verification

 description: The Catalogue provides a verification service for e.g. checking

the syntax

paths:

 /:

 get:

 tags:

 - discovery

 summary: 'Announce all endpoints'

 operationId: discovery

 responses:

 200:

 description: 'Provides a JSON element with relative paths to all other

 available endpoints of this Catalogue.'

 content:

 application/json:

 schema:

 type: object

 properties:

 query:

 type: string

 example: './query'

 self-descriptions:

 type: string

 example: './self-descriptions'

 self_description_hash:

 type: string

 example: './self-descriptions/{self_description_hash}'

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 70

© 2021. This work is licensed under a CC BY 4.0 license

 application/ld+json:

 schema:

 type: object

 properties:

 '@context':

 type: object

 properties:

 gax:

 type: string

 example: "http://gaia-x.eu/gaiaxOntology#"

 '@id':

 type: string

 example: "<the identifier of this catalogue>"

 gax:hasQueryEndpoint:

 type: string

 example: './query'

 gax:hasSelfDescriptionEndpoint:

 type: string

 example: './self-descriptions'

 gax:hasSelfDescriptionHashEndpoint:

 type: string

 example: './self-descriptions/{self_description_hash}'

 gax:isOperatedBy:

 type: string

 example: 'http://example.org/CatalogueProvider'

 /verifications/self-descriptions:

 get:

 tags:

 - verification

 summary: Show a HTML page to verify (portions of) a signed Self-Description

 operationId: verifyPage

 responses:

 200:

 description: 'HTML document that contains a query field to verify

(portions of) Self-Descriptions.'

 content:

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 71

© 2021. This work is licensed under a CC BY 4.0 license

 text/html:

 schema:

 type: string

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 post:

 tags:

 - verification

 summary: 'Send a JSON-LD document to verify with the information from the

Catalogue'

 operationId: verify

 requestBody:

 description: 'JSON-LD document to be verified object to send queries. Use

"application/json" for openCypher queries. A Catalogue may also support the other

content types depending on its supported query languages but only

"application/json" is mandatory.'

 content: {}

 responses:

 200:

 description: 'Verification result'

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/VerificationResult'

 400:

 $ref: '#/components/responses/ClientError'

 408:

 description: 'Query Timeout: the query took longer than the configured

timeout interval. The client needs to rewrite the query so it can be processed

faster.'

 500:

 $ref: '#/components/responses/ServerError'

 /sessions:

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 72

© 2021. This work is licensed under a CC BY 4.0 license

 get:

 tags:

 - session

 responses:

 200:

 description: Get information on the current session

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Session'

 /sessions/logout:

 get:

 tags:

 - session

 responses:

 200:

 description: The current session was closed

 /participants:

 get:

 tags:

 - participants

 summary: Get the registered participants

 operationId: listParticipants

 responses:

 200:

 description: List of registered participants

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Participant'

 400:

 $ref: '#/components/responses/ClientError'

 500:

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 73

© 2021. This work is licensed under a CC BY 4.0 license

 $ref: '#/components/responses/ServerError'

 post:

 tags:

 - participants

 summary: Register a new participant in the catalogue

 operationId: addParticipant

 requestBody:

 description: Participant Self-Description

 content:

 application/json-ld:

 schema:

 $ref: '#/components/schemas/Participant'

 responses:

 201:

 description: Created

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 /participants/{participantId}:

 get:

 tags:

 - participants

 summary: Get the registered participant

 operationId: getParticipant

 parameters:

 - in: path

 name: participantId

 required: true

 description: The participantId to get.

 schema:

 type: string

 responses:

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 74

© 2021. This work is licensed under a CC BY 4.0 license

 200:

 description: The requested participant

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Participant'

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 put:

 tags:

 - participants

 summary: Update a participant in the catalogue

 operationId: updateParticipant

 parameters:

 - in: path

 name: participantId

 required: true

 description: The participant to update.

 schema:

 type: string

 responses:

 200:

 description: Updated Participant

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Participant'

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 delete:

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 75

© 2021. This work is licensed under a CC BY 4.0 license

 tags:

 - participants

 summary: Delete a participant in the catalogue

 operationId: deleteParticipant

 parameters:

 - in: path

 name: participantId

 required: true

 description: The participant to delete.

 schema:

 type: string

 responses:

 200:

 description: Deleted Participant

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Participant'

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 /participants/{participantId}/users:

 get:

 tags:

 - participants

 summary: Get all users of the registered participant

 operationId: getUsersOfParticipant

 parameters:

 - in: path

 name: participantId

 required: true

 description: The participant to create.

 schema:

 type: string

 responses:

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 76

© 2021. This work is licensed under a CC BY 4.0 license

 200:

 description: Users of the participant

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/User'

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 /users:

 get:

 tags:

 - users

 summary: List the registered users

 operationId: listUsers

 responses:

 200:

 description: List of usernames

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/User'

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 post:

 tags:

 - users

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 77

© 2021. This work is licensed under a CC BY 4.0 license

 summary: Register a new user to the associated participant in the catalogue

 operationId: addUser

 requestBody:

 description: User Self-Description

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/User'

 responses:

 201:

 description: Created

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 /users/{userId}:

 get:

 tags:

 - users

 summary: Get the user profile

 operationId: getUser

 parameters:

 - name: userId

 in: path

 required: true

 schema:

 type: string

 responses:

 200:

 description: User profile

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/User'

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 78

© 2021. This work is licensed under a CC BY 4.0 license

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 put:

 tags:

 - users

 summary: Update the user profile

 operationId: updateUser

 parameters:

 - name: userId

 in: path

 required: true

 schema:

 type: string

 responses:

 200:

 description: Updated user profile

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/User'

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 delete:

 tags:

 - users

 summary: Delete a user

 operationId: deleteUser

 parameters:

 - name: userId

 in: path

 required: true

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 79

© 2021. This work is licensed under a CC BY 4.0 license

 schema:

 type: string

 responses:

 200:

 description: Deleted user profile

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/User'

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 /users/{userId}/roles:

 get:

 tags:

 - users

 summary: Get the roles of the user

 operationId: getUserRoles

 parameters:

 - name: userId

 in: path

 required: true

 schema:

 type: string

 responses:

 200:

 description: User roles

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Role'

 400:

 $ref: '#/components/responses/ClientError'

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 80

© 2021. This work is licensed under a CC BY 4.0 license

 500:

 $ref: '#/components/responses/ServerError'

 put:

 tags:

 - users

 summary: Update the roles of the user

 operationId: updateUserRoles

 parameters:

 - name: userId

 in: path

 required: true

 schema:

 type: string

 requestBody:

 description: List of roles which should be assigned to the user

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Role'

 responses:

 200:

 description: All assigned roles of the user

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Role'

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 /queries:

 get:

 tags:

 - query

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 81

© 2021. This work is licensed under a CC BY 4.0 license

 summary: Retrieve an HTML website to send openCypher queries to the Catalogue

 operationId: querywebsite

 security:

 - oAuthNoScopes:

 - query

 responses:

 200:

 description: 'HTML document that contains a query field for openCypher

queries.'

 content:

 text/html:

 schema:

 type: string

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 post:

 tags:

 - query

 summary: 'Send a query to the Catalogue'

 operationId: query

 parameters:

 - in: header

 name: query-language

 schema:

 type: string

 enum: [openCypher, application/sparql-query, sparql*]

 default: openCypher

 required: true

 security:

 - oAuthNoScopes:

 - query

 requestBody:

 description: 'JSON object to send queries. Use "application/json" for

openCypher queries. A Catalogue may also support the other content types depending

on its supported query languages but only "application/json" is mandatory.'

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 82

© 2021. This work is licensed under a CC BY 4.0 license

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Statements'

 application/sparql-query:

 example: ''

 sparql*:

 example: ''

 responses:

 200:

 description: 'successful query'

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Results'

 application/sparql-results+xml:

 example: ''

 text/turtle:

 example: ''

 text/html:

 example: ''

 400:

 description: 'Malformed Message: The receveived request cannot be

processed, either because its syntax is incorrect or forbidden query clauses are

used. For instance, it is not allowed to manipulate data through the query

endpoint.'

 content:

 application/json:

 schema:

 $ref: '#/components/responses/ClientError'

 408:

 description: 'Query Timeout: the query took longer than the configured

timeout interval. The client needs to rewrite the query so it can be processed

faster.'

 500:

 $ref: '#/components/responses/ServerError'

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 83

© 2021. This work is licensed under a CC BY 4.0 license

 /self-descriptions:

 get:

 tags:

 - self-descriptions

 summary: Get the list of Self-Descriptions in the Catalogue

 operationId: readSelfDescriptions

 parameters:

 - name: daterange

 in: query

 description: Range of dates for the Self-Descriptions (when the SD was

first known this Catalogue)

 required: false

 schema:

 type: string

 - name: issuer

 in: query

 description: Filter for the issuer of the Self-Description. This is the

unique ID of the Participant that has prepared the Self-Description.

 required: false

 schema:

 type: string

 - name: offset

 in: query

 schema:

 type: integer

 minimum: 0

 default: 0

 required: false

 description: The number of items to skip before starting to collect the

result set.

 - in: query

 name: limit

 schema:

 type: integer

 minimum: 1

 maximum: 1000

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 84

© 2021. This work is licensed under a CC BY 4.0 license

 default: 100

 required: false

 description: The number of items to return.

 responses:

 200:

 description: List of self-description in JSON-LD format

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Self-Description'

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 post:

 tags:

 - self-descriptions

 summary: Add a new self-description to the catalogue

 operationId: addSelfDescription

 security:

 - oAuthNoScopes:

 - write_self-descriptions

 requestBody:

 description: The new Self-Description

 content:

 application/json: {}

 required: true

 responses:

 201:

 description: Created

 405:

 description: Invalid input

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 85

© 2021. This work is licensed under a CC BY 4.0 license

 content: {}

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 /self-descriptions/{self_description_hash}:

 get:

 tags:

 - self-descriptions

 summary: Read a Self-Description by its hash

 description: Returns a single Self-Description

 operationId: readSelfDescriptionByHash

 parameters:

 - name: self_description_hash

 in: path

 description: Hash of the self-description

 required: true

 schema:

 type: string

 security:

 - oAuthNoScopes:

 - read_self-descriptions

 responses:

 200:

 description: The requested Self-Description

 content:

 application/json: {}

 404:

 description: Self-Description not found

 content: {}

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 86

© 2021. This work is licensed under a CC BY 4.0 license

 put:

 tags:

 - self-descriptions

 summary: Change the lifecycle state of a self-description

 operationId: updateSelfDescription

 parameters:

 - name: self_description_hash

 in: path

 description: Hash of the self-description

 required: true

 schema:

 type: string

 requestBody:

 description: Lifecycle update message

 content:

 application/json: {}

 required: true

 responses:

 405:

 description: Invalid input

 content: {}

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 delete:

 tags:

 - self-descriptions

 summary: Delete a self-description

 operationId: deleteSelfDescription

 parameters:

 - name: self_description_hash

 in: path

 description: Hash of the self-description

 required: true

 schema:

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 87

© 2021. This work is licensed under a CC BY 4.0 license

 type: string

 responses:

 200:

 description: OK

 405:

 description: Invalid input

 content: {}

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 /schemas/latest:

 get:

 tags:

 - schemas

 summary: Get the latest schema of all types

 operationId: getLatestSchemas

 responses:

 200:

 description: The latest schemas of all types

 content:

 application/json:

 schema:

 type: array

 items:

 type: object

 405:

 description: Invalid input

 content: {}

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 88

© 2021. This work is licensed under a CC BY 4.0 license

 /schemas/latest/{type}:

 get:

 tags:

 - schemas

 summary: Get latest schemas of a specific type

 operationId: getLatestSchemaOfType

 parameters:

 - name: type

 in: path

 description: Type of the requested Self-Description schema e.g. Service

 required: true

 schema:

 type: string

 responses:

 200:

 description: The latest schema of requested types

 content:

 application/json: {}

 405:

 description: Invalid input

 content: {}

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

 /roles:

 get:

 tags:

 - roles

 summary: Get all possible roles in the catalogue

 operationId: getAllRoles

 responses:

 200:

 description: All roles

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 89

© 2021. This work is licensed under a CC BY 4.0 license

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Role'

 400:

 $ref: '#/components/responses/ClientError'

 500:

 $ref: '#/components/responses/ServerError'

Appendix C: Database Structure for Self-Description Metadata
-- The following is the SQL definition of a database schema for metadata

-- to the raw JSON-LD Self-Descriptions

CREATE TABLE statuscodes (

 id INTEGER PRIMARY KEY,

 status VARCHAR(20) NOT NULL UNIQUE

);

INSERT INTO statuscodes (id, status)

VALUES

 (1, 'active'),

 (2, 'deprecated'), -- deprecated: a new version of the self-description

 -- exists

 (3, 'eol'), -- eol: end of lifetime (assets can continue to run,

 -- but no more provisioning)

 (4, 'revoked'); -- revoked: any of the signing parties or a trusted

 -- party revoked

CREATE TABLE self_descriptions (

 hash CHAR(64) PRIMARY KEY, -- Hash of the JSON-LD

 -- self-description

 subject VARCHAR not null, -- GAIA-X identifier of the

 -- subject (@id) of the JSON-LD

 -- self-description

 validators VARCHAR[], -- GAIA-X identifiers of the

 -- participants who validated the

 -- self-description

 issued DATE not null, -- When was the self-description

 -- issued?

 received DATE not null, -- When was the self-description

 -- first received by this

 -- catalogue?

 jsonld VARCHAR not null, -- The raw JSON-LD matching

 -- the hash

 status INTEGER NOT NULL DEFAULT 1, -- Status of the

 -- Self-Description

CONSTRAINT fk_statuscodes FOREIGN KEY (status) references statuscodes (id)

 -- Only valid status are allowed

);

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 90

© 2021. This work is licensed under a CC BY 4.0 license

Appendix D: Gaia-X Architecture Decision Records
ADR-001: JSON-LD as the Exchange Format for Self-Descriptions

===

:adr-id: 001

:revnumber: 1.0

:revdate: 06-07-2020

:status: accepted

:author: Self-Description WP, Catalogue WP

:stakeholder: Self-Description WP, Catalogue WP

Summary

GAIA-X needs to define a serialization format for the exchange of

Self-Descriptions. The exchange format allows the self-descriptions to be

serialized into files for transportation between Services and Catalogues.

JSON-LD is selected as the Self-Description serialization format.

The following is a minimal example for the JSON-LD format::

 {

 "@context": "https://json-ld.org/contexts/gaia-x.jsonld",

 "@id": "http://dbpedia.org/resource/MyService",

 "provider": "http://dbpedia.org/resource/MyProvider",

 "name": "MyService"

 }

Linked Data Proofs 1.0 (https://w3c-ccg.github.io/ld-proofs/, currently in draft

status).

An example for a signed document with Linked Data Proofs is this::

 {

 "@context": "https://www.w3.org/2018/credentials/examples/v1",

 "title": "Hello World!",

 "proof": {

 "type": "Ed25519Signature2018",

 "proofPurpose": "assertionMethod",

 "created": "2019-08-23T20:21:34Z",

 "verificationMethod": "did:example:123456#key1",

 "domain": "example.org",

 "jws": "eyJ0eXAiOiJK...gFWFOEjXk"

 }

 }

Context

The Architecture Document (June 2020) states that Self-Descriptions are

expressed in an extensible format.

JSON is an established data serialization format. It is both human-readable and

machine-interpretable.

JSON-LD combines JSON with semantic technologies (ontologies) from the Linked

Data community. Specifically, the RDF-Standard is referenced. So the

schema-definitions (and tooling) from the established RDF format can be reused.

https://creativecommons.org/licenses/by/4.0/

Software Requirements Specification for FC.CCF Page 91

© 2021. This work is licensed under a CC BY 4.0 license

Alternative Technologies

~~~~~~~~~~~~~~~~~~~~~~~~ 

 

Decision Statements 

------------------- 

 

The serialization format for the exchange of GAIA-X Self-Descriptions is JSON-LD 

1.1. 

 

The RDF 1.1-standard is used to express an extensible hierarchy of schemas for 

Self-Descriptions with well-known attributes. 

 

Cryptographic signatures are added to Self-Descriptions according to the Linked 

Data Proofs 1.0 specification. 

 

Consequences 

------------ 

 

All Self-Descriptions need to be ready for serialization into the JSON-LD 

format. 

 

The extensible hierarchy of self-description attributes is expressed in an 

ontology according to the RDF standard. 

 

The Identifier of GAIA-X Assets and Participants must be IRIs (Internationalized 

Resource Identifiers [RFC3987]) so that they can be used for cross-referencing 

between Self-Descriptions in the JSON-LD format. 

 

ADR References 

-------------- 

 

External References 

------------------- 

 

* [JSON-LD] JSON-LD 1.1 - A JSON-based Serialization for Linked Data, 

  https://www.w3.org/TR/json-ld11 

* [LDP] Linked Data Proofs 1.0, https://w3c-ccg.github.io/ld-proofs/ 

* [RDF] RDF 1.1 Concepts and Abstract Syntax, 

  https://www.w3.org/TR/rdf11-concepts/ 

 

ADR-002: REST as the Interface Technology for Federation Services 

================================================================= 

 

:adr-id: 002 

:revnumber: 0.9 

:revdate: 23-07-2020 

:status: accepted 

:author: Catalogue WP 

:stakeholder: All Federation Services 

 

Summary 

------- 

 

GAIA-X defines a set of Federation Services. These Services provide an API for 

the development of client applications. This "client" could be an application 

developed by a GAIA-X Participant or a user interface that is part of GAIA-X 

itself. 

 

For the internal consistency of GAIA-X and the Federation Services, a common 

technology and design principles should be selected for the Federation Service's 

https://creativecommons.org/licenses/by/4.0/


Software Requirements Specification for FC.CCF  Page 92 

© 2021. This work is licensed under a CC BY 4.0 license 

API interface. 

 

The ADR proposes REST (HTTP+JSON) as the interface technology and OpenAPI as the 

interface definition language. 

 

Discussion 

---------- 

 

Many different protocols are in use for internet-based software interfaces. 

Following is an (incomplete) overview listing only the most common technologies. 

 

- SOAP Webservices (https://www.w3.org/TR/soap/) 

- XML-RPC (http://xmlrpc.com/) 

- REST (HTTP+JSON) 

- Object-Oriented Interfaces (Corba, OPC UA, ...) 

- Message-Oriented Interfaces (e.g. via Kafka, MQTT, AMQP, DDS, ...) 

 

In principle, the Federation Services could be implemented using either of the 

mentioned interface technologies. But there are further criteria besides the 

core functionality to take into consideration. Selecting a widely used 

technology with a proven track-record ensures that GAIA-X Participants have 

developers with the skills to immediately make use of the Federation Services. 

Furthermore, the established technologies are more likely to be widely supported 

by the different programming languages and environments in the long-term. 

 

From those criteria, the choice has fallen on a combination of REST (HTTP+JSON). 

It is the mostly widely used technology for web-API development (also used by 

the current hyperscalers) and has mature tooling. 

 

Based on the choice of REST (HTTP+JSON), several competing formats exist for 

expressing the interface definitions in a human and machine-readable format. 

 

- OpenAPI (http://spec.openapis.org/oas/v3.0.3) 

- RAML (https://raml.org/) 

- Hydra (https://www.hydra-cg.com/) 

- Custom Format for GAIA-X 

 

Again, all these technologies could perform the task to a sufficient degree. We 

select the most widely used alternative OpenAPI. 

 

Decision Statements 

------------------- 

 

The GAIA-X Federation Services use JSON-Documents transferred via a HTTP/REST 

API for their interfaces. 

 

Special use cases (e.g. for streaming data) might receive an exemption to use 

different interface technologies. 

 

The interfaces of the Federation Services are specified in the OpenAPI 

Specification (v3 or later). http://spec.openapis.org/oas/v3.0.3 

 

Consequences 

------------ 

 

Developers can reuse tools for the commonly used combination of HTTP+JSON for 

the Federation Services. 

 

Code stubs to interact with the Federation Services can be auto-generated from 

the OpenAPI definitions for many programming environments. 

 

https://creativecommons.org/licenses/by/4.0/


Software Requirements Specification for FC.CCF  Page 93 

© 2021. This work is licensed under a CC BY 4.0 license 

The Work-Packages that define the interfaces of the Federation Services use 

OpenAPI to define the interfaces in a human and machine-readable format. 

 

Notes 

----- 

 

The REST API specifications are described in https://gitlab.com/gaia-x/gaia-x-

core/gaia-x-core-document-technical-concept-architecture/-

/blob/master/architecture_document/federation_services.rst 

 

ADR References 

-------------- 

 

* ADR-001: JSON-LD as the Exchange Format for Self-Descriptions 

 

External References 

------------------- 

 

* [REST] https://en.wikipedia.org/wiki/Representational_state_transfer 

* [OpenAPI] http://spec.openapis.org/oas/v3.0.3 

 

ADR-003: Lifecycle of Self-Descriptions 

======================================= 

 

:adr-id: XXX 

:revnumber: 1.0  

:revdate: 05-11-2020 

:status: proposed 

:author: Catalogue WP 

:stakeholder: Self-Description WP, Catalogue WP 

 

Summary 

------- 

 

There are four possible states for the lifecycle of GAIA-X Self-Descriptions: 

active, eol (end of life), deprecated and revoked. 

 

Context 

------- 

 

GAIA-X Assets (Nodes, Services, etc.) and their Self-Descriptions can be updated 

over time. Furthermore, there can be Self-Descriptions that are abandoned or 

even revoked for containing false information. This needs to be explicitly 

tracked to prevent the Catalogue and GAIA-X participants to work with outdated 

Self-Descriptions. 

 

The claims of the Self-Descriptions in JSON-LD format can carry cryptographic 

proofs based on hash signatures. Furthermore, the hash of the JSON-LD file can 

be used as an identifier to reference to the source of information from the 

Catalogue. Hence the JSON-LD files are immutable and can only be replaced as a 

whole. The state of the Self-Descriptions therefore needs to be tracked as 

metadata outside of the JSON-LD files itself. 

 

End of Life: The Self-Descriptions are the source information for the GAIA-X 

Catalogue. In order for the Catalogue to contain only up-to-date information it 

should be "self-cleaning" whereby outdated information is removed automatically. 

This can be achieved by timeout dates attached to every Self-Description after 

which they are end-of-life. It is recommended that the automatic timeout date of 

Self-Descriptions is set rather low, e.g. 90 days. This has proven useful in the 

context of TLS certificates [LetsEncrypt] where a frequent renewal forces 

https://creativecommons.org/licenses/by/4.0/


Software Requirements Specification for FC.CCF  Page 94 

© 2021. This work is licensed under a CC BY 4.0 license 

providers that automated update systems are put in place instead of infrequent 

manual updates. 

 

Deprecated: If two versions of GAIA-X Assets (Nodes, Services, Data etc.) are 

offered at the same time, then they each have independent Self-Descriptions. In 

order for the Self-Descriptions to be self-contained, there shall be no partial 

updates to Self-Descriptions. The entire JSON-LD file is published in an updated 

version and the old Self-Description is deprecated with reference to the updated 

Self-Description. 

 

Revoked: GAIA-X needs to protect against bad actors that might not be able or 

willing to correct false information. Hence a revocation mechanism is put into 

place by which Self-Descriptions can be marked as non-active. Revocation can be 

performed by the original issuer of a Self-Description and also by trusted 

parties. 

 

Decision Statements 

------------------- 

 

The Self-Descriptions in JSON-LD format (ADR-001) have an additional state 

information that can change over time. The possible states are: 

 

- active 

- eol (end of life after a timeout date) 

- deprecated (by a newer Self-Description) 

- revoked (by a trusted party) 

 

The default state is "active". The other states are terminal, so no further 

state transitions are made once a Self-Description has become non-active. 

 

Non-active Self-Descriptions might still be available in the JSON-LD format in 

the historical record. But they are no longer considered for new search queries 

in the Catalogue, etc. 

 

Self-Descriptions have a timeout date after which they are in the "eol" state. 

The timeout date is part of the JSON-LD file and considered in cryptographic 

signatures. 

 

Self-Descriptions in the JSON-LD format are immutable and cannot be modified 

after they have been published. They can only be replaced by a new 

Self-Description (deprecated) or given another non-active status. 

 

A Self-Description with wrong or even fraudulent information can be revoked by 

the original issuer or a trusted party. Who is allowed to revoke is at the 

digression of the operators of the different Catalogues. Future rules for 

Catalogue operators by the GAIA-X organization may apply. 

 

Consequences 

------------ 

 

Having decided on the possible states reveals new questions that need to be 

answered in the context of the GAIA-X Catalogue. 

 

The specification of the Catalogue has to describe in detail how the information 

of the Self-Description state is exposed in its API and search query interfaces. 

 

The state information needs to be distributed between Catalogue instances. There 

might be disagreements / information gaps between Catalogue instances that need 

to be resolved. 

 

ADR References 

https://creativecommons.org/licenses/by/4.0/


Software Requirements Specification for FC.CCF  Page 95 

© 2021. This work is licensed under a CC BY 4.0 license 

-------------- 

 

- ADR-001: JSON-LD as the Exchange Format for Self-Descriptions 

 

External References 

------------------- 

 

- [LetsEncrypt] https://letsencrypt.org 

Appendix E: Overview GXFS Work Packages 

The project “Gaia-X Federation Services” (GXFS) is an initiative funded by the German Federal Ministry of 

Economic Affairs and Energy (BMWi) to develop the first set of Gaia-X Federation Services, which form the 

technical basis for the operational implementation of Gaia-X. 

 

The project is structured in five Working Groups, focusing on different functional areas as follows: 

 

Work Package 1 (WP1): Identity & Trust 

Identity &Trust covers authentication and authorization, credential management, decentral Identity 

management as well as the verification of analogue credentials. 

 

Work Package 2 (WP2): Federated Catalogue 

The Federated Catalogue constitutes the central repository for Gaia-X Self-Descriptions to enable the 

discovery and selection of Providers and their Service Offerings. The Self-Description as expression of 

properties and Claims of Participants and Assets represents a key element for transparency and trust in Gaia-

X. 

 

Work Package 3 (WP3): Sovereign Data Exchange 

Data Sovereignty Services enable the sovereign data exchange of Participants by providing a Data Agreement 

Service and a Data Logging Service to enable the enforcement of Policies. Further, usage constraints for data 

exchange can be expressed by Provider Policies as part of the Self-Description 

 

Work Package 4 (WP4): Compliance 

Compliance includes mechanisms to ensure a Participant’s adherence to the Policy Rules in areas such as 

security, privacy transparency and interoperability during onboarding and service delivery. 

 

Work Package 5 (WP5): Portal & Integration 

Gaia-X Portals and API will support onboarding and Accreditation of Participants, demonstrate service 

discovery, orchestration, and provisioning of sample services. 

 

 

 

 

 

 

https://creativecommons.org/licenses/by/4.0/


Software Requirements Specification for FC.CCF  Page 96 

© 2021. This work is licensed under a CC BY 4.0 license 

All together the deliverables of the first GXFS project phase are specifications for 17 lots, that will be awarded 

in EU-wide tenders: 

 

Further general information on the Federation Services can be found in [1]. 

 

 
 

https://creativecommons.org/licenses/by/4.0/

